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en Investigación y Doctorado en Matemáticas, which takes place in the Salón de Grados of the Faculty
of Mathematics of the Universitat de València.
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The Hausdorff metric and its applications

Amaia Gastearena ♭, Belén Reverte ♮ and Aurora Sánchez. ♯

(♭) agasiri@posgrado.upv.es
(♮) brevbad@posgrado.upv.es
(♯) asanm16a@posgrado.upv.es

1.1 Introduction

The Hausdorff metric is a mathematical tool widely used to measure the similarity between sets
of points in metric spaces. Its ability to compare not only the position but also the shape of
the sets makes it an essential instrument in fields such as computer vision, biomedical image
processing, and pattern recognition.

This work focuses on the theoretical study of the Hausdorff metric and its applications. Start-
ing from its mathematical definition, we analyze key properties such as stability under geometric
transformations and sensitivity to outliers. We also discuss various modifications proposed to
improve its performance in noisy environments, especially in tasks involving segmentation and
object matching in digital images.

Finally, we address the computational complexity associated with its calculation, highlighting
both its practical applications and theoretical limitations, thus establishing a solid foundation
for future research in this field.

1.2 The Hausdorff Metric

We work in the Euclidean space Rn with standard notions of distance:

• Between points: d(x, y) = ∥x− y∥,

• From a point to a set: d(x,A) = infa∈A ∥x− a∥,

• Between sets: d(A,B) = infa∈A,b∈B ∥a− b∥.

We also use the closed ball B(p, r), and set operations such as addition A + B = {a + b : a ∈
A, b ∈ B} and scalar multiplication λA = {λa : a ∈ A}.

Hausdorff distance: Given two non-empty compact setsK,L ⊂ Rn, the Hausdorff distance
is defined by:

δ(K,L) = max

{
sup
x∈K

inf
y∈L
∥x− y∥, sup

x∈L
inf
y∈K
∥x− y∥

}
.

An equivalent form is:

δ(K,L) = min{λ ≥ 0 | K ⊂ L+ λBn, L ⊂ K + λBn}.

This defines a metric on the family of non-empty compact subsets of Rn.
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XII Congreso del Máster en Investigación Matemática

To gain a more intuitive understanding of the Hausdorff distance, let us look at an example
involving the distance between two compact sets in the plane.

Example 1.2.1 Consider the triangle and the circle given by:

K = {(x, y) ∈ R2 : 0 ≤ x ≤ 2, 1 ≤ y ≤ 3− |2(x− 1)|},
L = {(x, y) ∈ R2 : (x− 3)2 + (y − 1)2 ≤ 1},

respectively.

Figure 1.1: Hausdorff Distance Between Two Sets

Although the minimal distance between K and L is d(K,L) = 0 due to overlapping regions,
the Hausdorff distance δ(K,L) = 2 more accurately reflects their geometric separation. Specifi-
cally, the center of the circle L is at (3, 1), and the distance to the nearest point of K is 3. Since
the radius of L is 1, enlarging L by λ = 2 ensures that K is contained within L + λBn, and
similarly L is contained within K + 2Bn. Thus, δ(K,L) = 2.

1.3 Modifications of the Hausdorff Metric for Object Matching

The Hausdorff metric is a useful tool for measuring the similarity between sets, but it has
important limitations in practical applications like object matching and shape recognition. Its
high sensitivity to noise and segmentation errors can misrepresent object similarity. To address
these issues, the Modified Hausdorff Distance (MHD) was developed, aiming for greater
robustness in noisy environments.

1.3.1 Modifications of the Hausdorff Distance

In image analysis, the Hausdorff distance is computed between finite point sets. Its reliance on
the maximum minimum distance makes it sensitive to isolated outlier points, which can signif-
icantly distort the measurement. The MHD reduces this influence by averaging the minimum
distances, making it more stable under perturbations.

In [Dubuisson and Jain(1994)], 24 variations of the Hausdorff distance were proposed and
tested. Synthetic images were first used to assess their discrimination power, followed by noise
robustness tests, and finally experiments with real-world images. MHD consistently demon-
strated superior performance in differentiating objects under realistic conditions.
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1.3.2 Directed Distances

The Hausdorff distance can be decomposed into directed distances:

δ(A,B) = max{h(A,B), h(B,A)},
where h(A,B) = maxx∈Aminy∈B ∥x− y∥ measures how far A is from B.

In practical applications, it is helpful to relax the strict maximum by ranking points by their
nearest neighbor distance and selecting other percentiles:

hK(A,B) = Kth
a∈Ad(a,B).

Here, the K-th nearest distance provides greater flexibility: for instance, the 50th percentile
corresponds to the median distance.

Six directed distances d1 to d6 are defined, using minimum, percentiles (50%, 75%, 90%),
maximum, and mean distance values between points in A and B.

1.3.3 Non-Directed Distance Measures

To obtain symmetric measures, combinations of directed distances are used:

f1(d(A,B), d(B,A)) = min(d(A,B), d(B,A)),

f2(d(A,B), d(B,A)) = max(d(A,B), d(B,A)),

f3(d(A,B), d(B,A)) =
d(A,B) + d(B,A)

2
,

f4(d(A,B), d(B,A)) =
Nad(A,B) +Nbd(B,A)

Na +Nb
.

Applying these to the six directed distances generates 24 possible non-directed measures. No-
tably, D18 corresponds to the classical Hausdorff distance.

Figure 1.2: Possible combinations of non-directed distance measures between two point sets.
Image obtained from [Dubuisson and Jain(1994)].

1.3.4 Object Matching using Distance Measures

An effective distance for object matching must satisfy two key properties:

1. Discrimination Power: ability to distinguish different objects,

2. Sensitivity to Noise: distance should increase with increasing differences.

In [Dubuisson and Jain(1994)], only D18 was found to satisfy all properties of a metric.
Other measures either violated the triangle inequality or failed the separation property, posing
challenges for robust object matching.
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Selection of Distance Measures Based on Discrimination Power

Experiments on synthetic images revealed that several measures (e.g., D1–D9, D13, D17, D21)
had poor discrimination power, often yielding a distance of zero between distinct objects. Mea-
sures based on operator f2 (maximum) exhibited better separation. Consequently, D10, D14,
D18, and D22 were selected for detailed evaluation.

Behavior Against Noise

Behavior against noise was assessed using four noise models: random perturbations (Kn), added
lines (Ka), removed lines (Kd), and pixel noise (Ku).

For D18 (standard Hausdorff distance), Figure 1.3 shows that it remains high even with
small noise levels and does not vary significantly as noise increases, making it overly sensitive
to outliers.

Figure 1.3: Behavior of the Hausdorff distance (D18) under Kn and Kp noise models. Image
obtained from [Dubuisson and Jain(1994)].

Generalized distances like D10 and D14 allow partial matching and are less sensitive to iso-
lated points. However, as seen in Figure 1.4, they can report zero distance even when significant
noise is present.

Figure 1.4: Behavior of distances D10 and D14 under pixel noise Kp. Image obtained from
[Dubuisson and Jain(1994)].

The Modified Hausdorff Distance D22 displayed the best behavior, increasing steadily with
noise (see Figure 1.5), providing a good balance between sensitivity and robustness.
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Figure 1.5: Behavior of the Modified Hausdorff Distance (D22) under different noise models.
Image obtained from [Dubuisson and Jain(1994)].

1.3.5 Application to Real Images

MHD was applied to real-world object edge images (e.g., moving vehicles). As shown in Fig-
ure 1.6, four edge images were analyzed, with small perturbations introduced.

Figure 1.6: Edge images of four real objects used for object matching tests. Image obtained
from [Dubuisson and Jain(1994)].

Results showed that the classical Hausdorff distance (D18) was overly sensitive to small
outliers, while MHD (D22) correctly grouped similar objects, as illustrated in Figure 1.7.
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Figure 1.7: Comparison of distance measures D10, D14, D18, and D22 applied to real images.
Image obtained from [Dubuisson and Jain(1994)].

1.3.6 Results

The Modified Hausdorff Distance (MHD) demonstrated clear advantages:

• It grows steadily with object dissimilarity,

• It is robust to outliers and small segmentation errors.

These properties make it the preferred distance measure for object matching tasks in noisy
environments.

1.4 Computational Complexity of the Hausdorff Distance

1.4.1 Problem Presentation

The Hausdorff d istance m easures h ow f ar t wo s ets a re f rom e ach o ther, b ut i ts computation
becomes complex when dealing with infinite o r s emi-algebraic s ets. While finite se t distances
are computable in polynomial time, infinite s ets o ften r equire a dvanced a lgebraic techniques,
particularly when described by polynomial constraints.

1.4.2 Semi-Algebraic Sets

Semi-algebraic sets are subsets of Rn defined b y p olynomial i nequalities a nd e quations. Al-
though powerful for representing complex geometries, their computation is complicated by the
presence of real (possibly irrational) coefficients, requiring sp ecialized transformations to  work
over rationals or integers.

1.4.3 General Decision Algorithm

The decision problem studied is: Given two semi-algebraic sets A, B and threshold t, determine
if

dH(A, B) ≤ t.
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This translates into a quantified logical formula:

∀a ∈ A,∃b ∈ B such that ∥a− b∥ ≤ t.

Solving such formulas involves significant complexity due to the alternation of quantifiers (∀,
∃).

1.4.4 Algebraic Complexity

Problems involving real polynomial constraints are classified into complexity classes:

• ∀∃R: Universal-existential theory over the reals.

• ∀∃<R: Same, but restricted to strict inequalities without negations.

Determining dH(A,B) ≤ t places the problem in ∀∃<R.

1.5 Problems and Results

1.5.1 Main Result

Theorem 1 The Hausdorff distance decision problem for semi-algebraic sets is ∀∃<R-complete.

This result shows that deciding whether dH(A,B) ≤ t is as hard as solving the most difficult
problems in the complexity class ∀∃<R. Consequently, it surpasses well-known classes like
NP and ∃R in computational difficulty, highlighting the inherent challenge of computing the
Hausdorff distance between general semi-algebraic sets.

1.5.2 Margin Reduction and Instance Construction

To further understand the computational hardness, beyond exact decision, the proof introduces
a technique called margin reduction.

The key idea is to create instances where the Hausdorff distance between the sets A and B
can only take two extremely separated values:

• Either the distance is less than a given threshold t,

• Or the distance is at least t · 22n , where n is the number of variables involved.

This large separation guarantees that even approximating dH(A,B) within a reasonable
factor becomes computationally infeasible, further reinforcing the problem’s hardness.

It is important to note that while margin reduction strengthens the inapproximability result,
the basic ∀∃<R-hardness is already established independently by a more fundamental construc-
tion.

1.5.3 Computational Implications

The margin reduction technique leads to the following important corollary:

Corollary 1 There is no polynomial-time algorithm that approximates the Hausdorff distance
within a margin f(n) = 22

o(n)
, unless P = ∀∃<R.

7
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This shows that not only is the exact computation hard, but even rough approximations are
impossible under standard complexity assumptions.

Moreover, the Hausdorff distance problem remains ∀∃<R-complete even if the sets A and B
are described by particularly simple algebraic formulas:

• Either by a conjunction of quadratic polynomial equations,

• Or by a single polynomial equation of degree at most four (quartic).

Thus, syntactic simplicity of the formulas does not make the problem computationally easier.

1.6 Proof Strategy of the Main Result

The proof strategy proceeds as follows:

• Start from an arbitrary instance of a ∀∃<R problem, given by a second-order logical
formula:

ϕ := ∀X ∈ Rn,∃Y ∈ Rm : ψ(X,Y ),

where ψ is a quantifier-free formula involving strict inequalities.

• Define two sets in Rn+m:

– A as the set of (x, y) pairs satisfying ψ(x, y),

– B as the entire domain [−C,C]n × {0}m, where C is a sufficiently large constant.

• The critical link is:
dH(A,B) ≤ t if and only if ϕ is true.

If ϕ is true, A densely covers B, making the distance zero or very small. If ϕ is false, there
is a region missing from A (an open ball), causing the Hausdorff distance to be strictly
positive.

• To ensure that false instances of ϕ generate a real ”gap” in A (rather than isolated points),
the construction guarantees that the counterexample set contains an open ball of positive
radius. This step is essential to ensure dH(A,B) > 0 when ϕ is false.

• Additionally, preprocessing steps ensure that all formulas respect the Strict-UETR con-
ditions:

– All inequalities are strict (<,>),

– No explicit negations (¬) are used.

Thus, the construction successfully reduces any ∀∃<R instance to a Hausdorff distance de-
cision problem between semi-algebraic sets. Consequently, the Hausdorff distance problem is
shown to be ∀∃<R-complete.

1.6.1 Conclusions

• For finite point sets, dH is computable in O(ab), or O((a + b) log(a + b)) using Voronoi
diagrams.

• For convex polygons or simplicial complexes, efficient algorithms exist.

• For semi-algebraic sets, computing dH is ∀∃<R-complete, and even approximation is in-
feasible unless major breakthroughs in complexity theory occur.

8
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1.7 Application of the Hausdorff Distance in Image Processing

The Hausdorff distance is widely used in computer vision for tasks like shape comparison,
object recognition, and image alignment [Karimi and Salcudean(2019)]. In the medical field, it
evaluates discrepancies between geometric structures, particularly in segmentation validation.

1.7.1 Introduction to Image Processing

Image processing analyzes digital images to extract information. It ranges from low-level tasks
like adjusting brightness to complex ones like object detection. We focus here on border detection
and segmentation, key areas where the Hausdorff distance applies.

Border Detection. Edge detection identifies intensity changes that correspond to object
boundaries [Torre and Poggio(1986)]. Techniques include Sobel, Prewitt, and Canny methods,
essential for applications like medical imaging.

Figure 1.8: Example of edge detection.

Image Segmentation. Segmentation divides an image into meaningful regions, facilitating
object detection [Haralick and Shapiro(1985)]. Methods include thresholding, clustering, and
deep learning architectures like U-Net and Mask R-CNN.

Figure 1.9: Example of image segmentation.

1.7.2 The Hausdorff Distance in Image Processing

Shape comparison is critical in image matching, where the Hausdorff distance measures the prox-
imity between two point sets without requiring exact point correspondences. While robust to
small variations, it is highly sensitive to outliers [Zhao et al.(2005)Zhao, Shi, and Deng]. Mod-
ifications like the Modified Hausdorff Distance mitigate this issue, as discussed in Section 1.3.

Given two segmentations (ground truth and prediction setsX and Y ), the Hausdorff distance
quantifies their similarity [Karimi and Salcudean(2019)].

9
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Figure 1.10: Ground-truth and predicted segmentations [Karimi and Salcudean(2019)].

Figure 1.11: Schematic of Hausdorff distance between sets X and Y
[Karimi and Salcudean(2019)].

Algorithms for Computing the Hausdorff Distance

Naive Algorithm. The NaiveHD algorithm computes all pairwise distances with complex-
ity O(n ·m) [Chen et al.(2017)Chen, He, Wu, and Hou].

ITK Algorithm. The Insight Segmentation and Registration Toolkit (ITK) method im-
proves efficiency using distance transforms and spatial indexing [Segmentation and (ITK)(n.d.)],
achieving complexity O(N + n).

1.7.3 The Hausdorff Distance in Medical Imaging

An example from [El-Banby et al.(2024)El-Banby, Salem, Tafweek, and El-Azziz] uses the Haus-
dorff distance to validate a deep U-Net model for breast cancer detection in mammography.

10
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Figure 1.12: Segmentation process flow for abnormalities detection
[El-Banby et al.(2024)El-Banby, Salem, Tafweek, and El-Azziz].

The model uses preprocessing (artifact removal, CLAHE, filtering), data augmentation, and
a U-Net architecture for segmentation, evaluated on CBIS-DDSM and INbreast datasets.

Figure 1.13: U-Net architecture [El-Banby et al.(2024)El-Banby, Salem, Tafweek, and El-Azziz].

Evaluation metrics include the Dice score, Jaccard coefficient, and the Hausdorff distance:

Dice score =
2|GT ∩ P |
|GT|+ |P | ,

Jaccard coefficient =
|GT ∩ P |
|GT ∪ P | ,

Hausdorff distance = max

(
sup
p∈P

inf
gt∈GT

d(p, gt), sup
gt∈GT

inf
p∈P

d(gt, p)

)
.

11
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Figure 1.14: Results using Dice, Jaccard, and Hausdorff metrics
[El-Banby et al.(2024)El-Banby, Salem, Tafweek, and El-Azziz].

The Hausdorff distance enables precise boundary evaluation, crucial for medical diagnostics
where minor misalignments are significant.

1.7.4 Conclusion

The Hausdorff distance is fundamental for image comparison in medical imaging, offering valu-
able insight into boundary discrepancies. Despite its sensitivity to outliers, modifications have
enhanced its robustness, allowing its use in various medical applications, from organ segmenta-
tion to model validation.
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On the Cahn-Hilliard-Navier-Stokes Equations and

the Implicit-Explicit Schemes

Andreu Martorell Garcés [

([) andreu.martorell@uv.es

1.1 Introduction

The isentropic compressible Cahn-Hilliard-Navier-Stokes (CHNS) equations model the dy-
namics of binary fluid mixtures, capturing both phase separation and fluid flow. These equations
result in a system of fourth-order partial differential equations that are numerically challenging
to solve due to the presence of high-order spatial derivatives.

The primary objective of this work is to study an efficient numerical scheme for solving
initial-boundary value problems involving these equations, [9, 1]. Specifically, in [9] is explained
a second-order Implicit-Explicit (IMEX) Runge-Kutta method, where the convective terms are
treated explicitly, while the stiff, high-order terms implicitly. A key advantage of this scheme is
that it only requires solving linear systems at each implicit stage, which can be done efficiently
using a multigrid solver [9, 4]. Numerical experiments are performed to validate the accuracy
and efficiency of the proposed method.

The numerical difficulties inherent in solving the CHNS equations stem from the stiffness
introduced by the second- to fourth-order spatial derivatives. When discretized using finite
differences, these terms result in matrices with large eigenvalues, leading to stiffness. In the
context of solving a system of ordinary differential equations of the form z′ = f(z), where the
Jacobian f ′(z) has eigenvalues with large negative real parts, stiffness occurs. In such cases,
explicit time-stepping methods are constrained to very small time steps, typically proportional to
1
|λ| , where λ denotes the eigenvalue with the largest absolute value. Implicit methods, however,
allow for significantly larger time steps, making them more suitable for stiff problems.

In many practical situations, the right-hand side of the equation can be decomposed as
f(z) = ge(z)−gc(z), where ge(z) and gc(z) are expansive and contractive terms, respectively, and
both are strictly convex functions. In such cases, an IMEX scheme that treats gc(z) implicitly
and ge(z) explicitly provides a gradient-stable method, as is shown in [7].

The CHNS system naturally contains both diffusive (contractive) and anti-diffusive (expan-
sive) components due to the Cahn-Hilliard equation and the diffusion produced by the Cauchy
stress tensor. As such, it is advantageous to treat the stiff, contractive components implicitly
and the remaining terms explicitly, specially if they do not significantly contribute to stiffness.
This approach leads to stable and efficient time integration schemes well-suited for the complex
dynamics modeled by the CHNS system.

The following work is structured as follows: in Section 1.2 the isentropic compressible CHNS
are stated; in Section 1.3 implicit-explicit Runge–Kutta finite difference numerical schemes for

14



XII Congreso del Máster en Investigación Matemática

the two-dimensional equations are proposed; finally in Section 1.4 we perform some numerical
experiments to assess the efficiency of the method.

1.2 Cahn-Hilliard-Navier-Stokes Equations

The models considered are based on [1]. Let ci be the mass concentration of species i = 1, 2,
and define c = c1− c2, ρ as the mixture density, and v as the bulk velocity. The domain Ω ⊂ R3

represents the fluid-filled region, and ε > 0 is a parameter related to the thickness of the diffuse
interface.

The Ginzburg-Landau free energy in a subregion V ⊆ Ω is given by:

E(ρ, c) =

∫

V

(
ρf(ρ, c) +

ε

2
|∇c|2

)
dx,

where f(ρ, c) = fe(ρ) + ψ(c), and the double-well potential is defined by ψ(c) = 1
4(c2 − 1)2.

The governing equations are the isentropic compressible Cahn-Hilliard-Navier-Stokes system
with gravity: 




ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) = ρg + div(T),

(ρc)t + div(ρcv) = ∆µ.

Here, the stress tensor, T, and the chemical potential, µ, are given, respectively, by:

T = ν(c)(∇v +∇vT ) + (λ(c)div(v)− p(ρ, c))I +
ε

2
|∇c|2I− ε(∇c⊗∇c),

µ = ψ′(c)− ε

ρ
∆c.

The system is closed by the initial and boundary conditions:

(ρ,v, c)|t=0 = (ρ0,v0, c0), v|∂Ω = ∇c · n|∂Ω = ∇µ · n|∂Ω = 0. (1.1)

In [1] is proved that the isentropic compressible Cahn-Hilliard-Navier-Stokes equations with
gravitation admit weak solutions, with renormalization of ρ in the sense of Di Perna and Lions,
in any interval [0, T ] for T > 0, provided the following conditions are satisfied:

γ >
3

2
, 0 ≤ ρ0 ∈ Lγ(Ω), ρ0|v0|2 ∈ L1(Ω), c0 ∈ H1(Ω).

Therefore, consider ν, λ as constant parameters, p(ρ) = Cpρ
γ with Cp > 0 constant and

γ > 3
2 . The system of equations is given by:





ρt + div(ρv) = 0,

(ρv)t + div
(
ρv ⊗ v + p(ρ)I

)
= ρg + (ν + λ)∇div(v)

+ ν∆v +
ε

2
∇|∇c|2 − εdiv(∇c⊗∇c),

(ρc)t + div(ρcv) = ∆µ.
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In the remainder of the present work, we restrict our analysis of this system to the two-
dimensional case, following the approach provided by [9]. Assuming that the velocity field
is denoted by v = (v1, v2), the governing equations in 2D become:

ρt + (ρv1)x + (ρv2)y = 0,

(ρv1)t + (ρv2
1 + Cpρ

γ)x + (ρv1v2)y =
ε

2
(c2
y − c2

x)x − ε(cxcy)y+

ν∆v1 + (ν + λ)((v1)xx + (v2)xy),

(ρv2)t + (ρv2
2 + Cpρ

γ)y + (ρv1v2)x = ρg +
ε

2
(c2
x − c2

y)y − ε(cxcy)x+

ν∆v2 + (ν + λ)((v1)xy + (v2)yy),

(ρc)t + (ρcv1)x + (ρcv2)y = ∆

(
ψ′(c)− ε

ρ
∆c

)
.

(1.2)

1.3 Numerical Schemes

Numerical schemes for the Cahn-Hilliard equation can be found in [5, 6], while methods for the
quasi-incompressible Cahn-Hilliard-Navier-Stokes are presented in [8, 11, 13].

Our purpose is to follow the approach provided in [9] for the two-dimensional case of the
compressible isentropic CHNS equation. In [9] it is introduced a second order IMEX-RK scheme,
where convective terms are treated explicitly, and only linear systems need to be solved.

1.3.1 Spatial Semidiscretization

This section presents finite difference numerical methods for the efficient approximation of so-
lutions to the two-dimensional equations introduced in 1.2. Thus, consider Ω = (0, 1)2 and
the equispaced computational grid given by the M2 nodes xi,j =

((
i− 1

2

)
h,
(
j − 1

2

)
h
)

for
i, j = 1, · · · ,M , where h = 1

M and we denote by (x, y) the spatial variable x.
We denote by

u = (ρ,m, q), m = (m1,m2) = (ρv1, ρv2), q = ρc,

the vector of conserved variables and aim to approximate equation (1.2) by a spatial semi-
discretization consisting of 4M2 ordinary differential equations

u′k,i,j(t) = L(U(t))k,i,j , k = 1, · · · , 4, i, j = 1, · · · ,M,

for 4M2 unknowns u′k,i,j ∈ R4 which are approximations of uk(xi,j , t) and form the 4M2 (column)
vector function U(t) by using lexicographical order so that

U =




%
% ∗ V1

% ∗ V2

% ∗ C


 , (% ∗ S)i = %iSi,

ρ(xi,j , t) ≈ %M(i−1)+j(t), vk(xi,j , t) ≈ (Vk)M(i−1)+j(t), k = 1, 2, c(xi,j , t) ≈ CM(i−1)+j(t).

For the sake of notation and simplicity, we adopt a slight abuse of notation, identifying, for
example, %i,j ≡ %M(i−1)+j . We also use superscripts for M2-block notation, e.g., U1 = %.
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The nonzero terms in the spatial semidiscretization

L(U) = C(U(t)) + L1(U(t)) + L2(U(t)) + L3(U(t)) + L4(U(t)),

are for the convective terms:

C(U)1,i,j ≈ − ((ρv1)x + (ρv2)y) (xi,j , t), C(U)2,i,j ≈ −
(
(ρv2

1 + ργ)x + (ρv1v2)y
)

(xi,j , t),

C(U)3,i,j ≈ −
(
(ρv1v2)x + (ρv2

2 + ργ)y
)

(xi,j , t), C(U)4,i,j ≈ − ((ρcv1)x + (ρcv2)y) (xi,j , t),

and for the diffusive terms:

L1(U)3,i,j ≈ ρ(xi,j , t)G,

L2(U)2,i,j ≈
(ε

2
(c2
y − c2

x)x − ε(cxcy)y
)

(xi,j , t),

L2(U)3,i,j ≈
(ε

2
(c2
x − c2

y)y − ε(cxcy)x
)

(xi,j , t).

L3(U)4,i,j ≈ ∆

(
ψ′(c)− ε

ρ
∆c

)
(xi,j , t),

L4(U)2,i,j ≈
(
ν((v1)xx + (v1)yy) + (ν + λ)

(
(v1)xx + (v2)xy

))
(xi,j , t),

L4(U)3,i,j ≈
(
ν((v2)xx + (v2)yy) + (ν + λ)

(
(v1)xy + (v2)yy

))
(xi,j , t).

Let us see how we approximate each of the above operators.

The convective term C is obtained through finite differences of numerical fluxes obtained by
WENO5 reconstructions [2, 3] on Global Lax–Friedrichs flux splittings [12], which is fifth-order
accurate for finite difference schemes, based on point values.

The approximation of the only nonzero term of the operator L1 is taken pointwise, i.e.,

L1(U)3,i,j ≈ ρ(xi,j , t)g.

The operator L2, which involves the derivatives of c in the conservation of momenta, is
approximated using finite differences which are second-order accurate at interior points and first-
order accurate at boundary points. Indeed, consider the finite difference operators for functions
on M ×M grids, to approximate first-order derivatives along the x dimension (analogously in
the y-direction):

D1∗
x fi,j =





fi,j
h , i = 1,
fi,j−fi−1,j

h , 1 < i < M,

−fi−1,j

h , i = M,

D1
xfi,j =

{
fi+1,j−fi,j

h , i < M,

0, i = M,

Dx fi,j =





fi+1,j−fi−1,j

2h , 1 < i < M,
fi+1,j−fi,j

h , i = 1,
fi,j−fi−1,j

h , i = M,

D∗xfi,j =





fi+1,j−fi−1,j

2h , 1 < i < M,
fi+1,j−fi,j

2h , i = 1,
fi,j−fi−1,j

2h , i = M,

and the shift operator

Sxfi,j =

{
fi+1,j , i < M,

0, i = M.

The properties of these operators are the following:
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1. D1∗
x fi,j is a second-order accurate approximation for fx(xi− 1

2
,j), when fi,j = f(xi,j) and

f ∈ C3, with f(x0,j) = f(xM,j) = 0. This operator is used to approximate pure double
derivatives.

2. D1
xfi,j is a second-order accurate approximation for fx(xi+ 1

2
,j), when fi,j = f(xi,j) and

f ∈ C3, with fx(xM+ 1
2
,j) = 0. This operator is also used to approximate pure double

derivatives. The two operators are related by D1∗
x = −(D1

x)T .

3. Dx fi,j is a second-order accurate approximation for fx(xi,j) for 1 < i, j < M , and first-
order accurate otherwise, assuming fi,j = f(xi,j) and f ∈ C3.

4. D∗xfi,j is a second-order accurate approximation for fx(xi,j) when 1 < i, j < M or j =
1,M , and first-order accurate otherwise, assuming fi,j = f(xi,j), f ∈ C3, and f(xi, 1

2
) =

f(xi,M+ 1
2
) = 0.

We consider the above second-order accurate approximations at interior points 1 < i, j < M ,
and first-order accurate at boundary points. Let

ci,j =
(ρc)i,j
ρi,j

≈ c(xi,j),

with boundary conditions on c taken into account as in equation (1.1). Then:

(c2
x)x(xi,j) ≈

(
D1∗
x

(
D1
xC ∗D1

xC
))
i,j
, (c2

y)y(xi,j) ≈
(
D1∗
y

(
D1
yC ∗D1

yC
))
i,j
,

(c2
y)x(xi,j) ≈

(
Dx

(
D∗yC ∗D∗yC

))
i,j
, (c2

x)y(xi,j) ≈ (Dy (D∗xC ∗D∗xC))i,j ,

and

(cxcy)x(xi,j) ≈
1

2

(
D1∗
x

(
D1
xC ∗

(
SxD

∗
yC +D∗yC

)))
i,j
,

(cycx)y(xi,j) ≈
1

2

(
D1∗
y

(
D1
yC ∗ (SyD

∗
xC +D∗xC)

))
i,j
.

On the other hand, the operator L3, which is related to the Cahn-Hilliard equation, needs a
special treatment. This is because only negative definite terms should be treated implicitly, and
the term (ψ′(c))xx changes sign in (−1, 1). Therefore, due to Eyre [7], a splitting ψ′ = φ+ + φ−
is considered in such a way that φ+ is treated implicitly and φ− explicitly. Both function are

φ+(c) = 2c, φ−(c) = c3 − 3c,

which verifies that
φ′+(c) = 2 > 0, φ′−(c) = 3(c2 − 1) ≤ 0,

for every c ∈ [−1, 1].

For approximating ∆(φ±(c))(xi,j , t), we consider the matrix

M±(C) = −(IM ⊗DT
1 )D(λx)D(λx±)(IM ⊗D1)− (DT

1 ⊗ IM )D(λy)D(λy±)(D1 ⊗ IM ),

where IM denotes the M ×M identity matrix, and ⊗ is the Kronecker product, D is the diagonal 
operator on M × M matrices given by

(D(v)w)i,j = vi,j wi,j , for i, j = 1, · · · , M , v, w ∈ RM×M ,
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D1 =
1

h




−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
. . .

. . .
...

...
0 0 · · · −1 1 0
0 0 · · · 0 0 0



∈ RM×M ,

and λx± and λy± is defined by the midpoints values of φ± between adjacent grid cells in the x-
and y-directions, respectively.

Thus, a second-order accurate approximation of the operator L3 is given by

L3(U)4,i,j ≈
(
M+(C)C +M−(C)C − ε∆h

(
D(%)−1∆hC

))
i,j
,

where (M±(C)C)i,j ≈ ∆ (φ±(c)) (xi,j , t) and ∆h is the discrete laplacian operator.

Finally, it remains to approximate the operator L4, which involves the derivatives of v in the
conservation of momenta. We use the following finite difference approximation for (vk)xx, (vk)yy:

w′′(xi) =





1

h2

(
4

3
w(xi+1)− 4

3
w(xi)

)
, i = 1,

1

h2
(w(xi+1)− 2w(xi) + w(xi−1)) , 1 < i < M,

1

h2

(
−4w(xi) +

4

3
w(xi−1)

)
, i = M,

for any w ∈ C4 such that w(0) = w(1) = 0. This approximation is second-order accurate
for interior points 1 < i, j < M , and first-order accurate at the boundaries under the no-slip
boundary conditions for vk, k = 1, 2.
These approximations lead to the k = 2, 3 blocks L4

k(U) of L4(U), expressed as:

[
L4

2(U)

L4
3(U)

]
=

[
(2ν + λ)IM ⊗ E + νE ⊗ IM (ν + λ)D ⊗D

(ν + λ)D ⊗D νIM ⊗ E + (2ν + λ)E ⊗ IM

][
V1

V2

]
,

where matrices E and D are defined as follows:

E =
1

h2




−4
3

4
3 0 · · · 0

1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 4

3 −4
3



, D =

1

h




−1 1 0 · · · 0
−1

2 0 1
2 · · · 0

...
. . .

. . .
. . .

...
0 · · · −1

2 0 1
2

0 · · · 0 −1 1



,

which fail to be symmetric due to the boundary conditions.

1.3.2 IMEX schemes

For obtaining a Linearly Implicit Explicit schemes we use the technique of doubling variables
and a partitioned Runge-Kutta schemes [9, 4, 10]. Consider the operator

L̃(Ũ , U) = C(Ũ) + L1(U) + L2(U) + L̃3(Ũ , U) + L4(U),

where Ũ is treated explicitly and U implicitly and

L̃3(Ũ , U)4,i,j =
(
M+(C̃)C +M−(C̃)C̃ − ε∆h

(
D(%)−1∆hC

))
i,j
,
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We have that the initial value problem

U ′ = L(U),

U(0) = U0,

(1.3)

is equivalent to

Ũ ′ = L̃(Ũ , U),

U ′ = L̃(Ũ , U),

Ũ(0) = U(0) = U0.

A partitioned Runge-Kutta scheme, in which there are two different s stages Butcher tableaus,
one explicit and one (diagonally) implicit

δ̃ α̃

β̃T
, α̃i,j = 0, j ≥ i, δ α

βT
, αi,j = 0, j > i,

can be applied to (1.3). It can be seen that if both Butcher tableaus yield second order accurate
schemes and β = β̃, then the resulting partitioned Runge-Kutta scheme is second-order accurate
[10]. Therefore, making this assumption, it is shown that there is no need of doubling variables
resulting in the recursion

Ũ (i) = Ũn + ∆t
∑

j<i

α̃i,jL̃(Ũ (j), U (j)),

U (i) = Un + ∆t
∑

j<i

αi,jL̃(Ũ (j), U (j)) + ∆tαi,iL̃(Ũ (i), U (i)),

Un+1 = Un + ∆t
s∑

j=1

βjL̃(Ũ (j), U (j)),

for i = 1, ..., s.

1.3.3 System to solve

At each stage, one needs to solve

U (i) = Un + ∆t
∑

j<i

αi,jL̃(Ũ (j), U (j)) + ∆tαi,iL̃(Ũ (i), U (i)),

for U (i), where

Un =




%n

Mn
1

Mn
2

Qn



, U (i) =




%(i)

M
(i)
1

M
(i)
2

Q(i)




=




%(i)

%(i) ∗ V (i)
1

%(i) ∗ V (i)
2

%(i) ∗ C(i)




.
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As we shall see, although L2, L̃3,L4 are not linear, only linear systems have to be solved.

Notice that %(i) is explicitly computable. Indeed, with block superscript notation for the
operators and L̃ variables, we get

%(i) = %n + ∆t
∑

j<i

αi,jL̃1
j + ∆tαi,iC̃

1(Ũ (i)).

For the fourth variable Q(i), since %(i) is already computed, this can be cast for the C(i)

variables, resulting in the following linear system

(
D(%(i))−∆tαi,iM+(C̃(i)) + ∆tαi,iε∆hD(%)−1∆h

)
C(i) =

= Qn + ∆t
∑

j<i

αi,jK4
j + ∆tαi,i

(
C̃4(Ũ (i)) +M−(C̃(i))C̃(i)

)
.

If %ki > 0 for all k, then the matrix of this system is symmetric and positive definite, since it is
the sum of a diagonal positive matrix and two symmetric and positive semidefinite matrices.

Finally, since %(i) and C(i) are known, then M
(i)
1 ,M

(i)
2 can be computed by solving a linear

system for V
(i)

1 and V
(i)

2 , which is

([
D(%(i)) 0

0 D(%(i))

]

−∆tαi,i

[
(2ν + λ)IM ⊗ E + νE ⊗ IM (ν + λ)D ⊗D

(ν + λ)D ⊗D νIM ⊗ E + (2ν + λ)E ⊗ IM

])

V

(i)
1

V
(i)

2




=

[
Mn

1

Mn
2

]
+ ∆t

∑

j<i

αi,j

[K2
j

K3
j

]
+ ∆tαi,i

[C2(Ũ (i)) + L2
1(Ũ (i)) + L2

2(Ũ (i))

C3(Ũ (i)) + L3
1(Ũ (i)) + L3

2(Ũ (i))

]
,

If %ki > 0 for all k, then the matrix of this system should be close to symmetric and positive
definite, since the matrix

−
[

(2ν + λ)IM ⊗ E + νE ⊗ IM (ν + λ)D ⊗D

(ν + λ)D ⊗D νIM ⊗ E + (2ν + λ)E ⊗ IM

]

is the discretization of the self-adjoint elliptic operator

− ((ν + λ)∇divv + ν∆v) ,

under the boundary conditions (1.1).

1.3.4 Time-Step Selection

The time step taken is

∆t = CFL∗ · ∆x

cs
,
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with CFL∗ is some number and the maximun of characteristic speeds, cs, is computed as

cs = max

{∣∣∣V (i)
k,j

∣∣∣+

√
Cpγ

(
%

(i)
j

)γ−1
: i = 1, . . . , s, k = 1, 2, j = 1, . . . ,M2

}
. (1.4)

The scheme is not ensured to be bound preserving, that is, it might happen that the density
become negative or the c-variable be outside [−1, 1]. Purely convective models can lead to the
formation of vacuum regions, which poses significant numerical challenges.

To address this, we adopt an adaptive time-stepping strategy: the time step ∆t is reduced by
0.5 whenever |c| exceeds a predefined threshold (1.5 in our experiments), and gradually increased
to a prescribed maximum when the solution remains within acceptable bounds. Although, there
is not a proof that this strategy always succeeds, the simulations |c| has been always below the
threshold, at the expense of local reductions of the parameter CFL∗ [9].

1.4 Numerical experiments

The objective of the experiments in this section are:

1. Showing that the order of the global errors in some experiments coincides with the expected
design order of the scheme used to obtain them.

2. Showing that some IMEX schemes can perform time steps ∆t with the same stability
restrictions as the purely convective subsystem.

3. Testing the behaviour of different issues for the alogrithms, such as conservation.

For all numerical experiments, the adiabatic constant γ is set to 5/3, the constant Cp to 1, the
gravity g = −10 and CFL= 0.4 with ∆t provided by (1.4). In addition, the following second
order Butcher tableaus,

*-DIRKSA

0 0 0
1 + s 1 + s 0

s 1− s
,

1− s 1− s 0
1 s 1− s

s 1− s
, s =

1√
2
,

are considered.

1.4.1 Order test

This test is designed to verify that the *-DIRKSA method attains second-order accuracy in
terms of the global errors. To this end, a forcing term is added to the equations so that the
solution is prescribed. In particular, the solution in this case is

ρ∗(x, y, t) =
cos(2πx) cos(πy)(t+ 1)

10
+

5

4
,

v∗1(x, y, t) = − sin(πx) sin(πy)
(
2t2 − 1

)
,

v∗2(x, y, t) = sin(πx) sin(2πy)
(
t2 + 1

)
,

c∗(x, y, t) =
3

4
− cos(πx) cos(πy)(t− 1)

10
.
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Notice that the functions satisfy the boundary conditions. The equations to be solved are:

ρt + (ρv1)x + (ρv2)y = ρ∗t + (ρ∗v∗1)x + (ρ∗v∗2)y,

(ρv1)t + (ρv2
1 + Cpρ

γ)x + (ρv1v2)y =
ε

2
(c2
y − c2

x)x − ε(cxcy)y + ν∆v1

+ (ν + λ)((v1)xx + (v2)xy) + (ρ∗v∗1)t + (ρ∗(v∗1)2 + Cp(ρ
∗)γ)x + (ρ∗v∗1v

∗
2)y

− ε

2
((c∗y)

2 − (c∗x)2)x + ε(c∗xc
∗
y)y − ν∆v∗1 − (ν + λ)((v∗1)xx + (v∗2)xy),

(ρv2)t + (ρv1v2)x + (ρv2
2 + Cpρ

γ)y = ρg +
ε

2
(c2
x − c2

y)y − ε(cxcy)x + ν∆v2

+ (ν + λ)((v1)xy + (v2)yy) + (ρ∗v∗2)t + (ρ∗v∗1v
∗
2)x + (ρ∗(v∗2)2 + Cp(ρ

∗)γ)y − ρ∗g
− ε

2

(
(c∗x)2 − (c∗y)

2
)
y

+ ε(c∗xc
∗
y)x − ν∆v∗2 − (ν + λ)((v∗1)xy + (v∗2)yy),

(ρc)t + (ρcv1)x + (ρcv2)y = ∆

(
ψ(c)− ε

ρ
∆c

)
+ (ρ∗c∗)t + (ρ∗c∗v∗1)x

+ (ρ∗c∗v∗2)y −∆

(
ψ(c∗)− ε

ρ∗
∆c∗

)
.

The parameters that have been used for this test are: ν = 01, λ = 0.1 and ε = 10−4.

For M ×M grids with M = 2`, ` = 3, . . . , 8, the global errors of the approximations unk,i,j
obtained using the *-DIRKSA method at time tn = T = 0.01 are computed as

eM =
1

M2

4∑

k=1

M∑

i,j=1

∣∣unk,i,j − uk(xi,j , T )
∣∣ ,

and are reported in Table 1.1. The observed experimental order of convergence,

EOCM = log2

(
eM
e2M

)
,

approaches 2, confirming the second-order accuracy of the scheme.

M eM EOCM

8 1.9828e-02 2.21
16 4.2964e-03 2.04
32 1.0422e-03 1.97
64 2.6617e-04 1.97
128 6.7802e-05 1.98
256 1.7148e-05 –

Table 1.1: Computed orders of convergence of global errors.

1.4.2 Test of total mass conservation

In this test, we show that the current scheme preserve the total mass, that is,

∫

Ω
ρ(x, t) dx =

∫

Ω
ρ(x, 0) dx, and

∫

Ω
q(x, t) dx =

∫

Ω
q(x, 0) dx, (1.5)
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for almost all t ∈ (0, T ).

In order to check it, we consider ρ0 = 1, v0 = 0, and c0 as a uniform random sample of zero
mean and 10−10 standard deviation. We approximate (1.5) by computing

∫

Ω
ρ(x, tn) dx−

∫

Ω
ρ(x, 0) dx ≈ errρ(tn) =

M∑

i,j=1

%ni,j −
M∑

i,j=1

%0
i,j ,

∫

Ω
q(x, tn) dx−

∫

Ω
q(x, 0) dx ≈ errq(tn) =

M∑

i,j=1

Qni,j −
M∑

i,j=1

Q0
i,j .

In Figure 1.1 the results are shown for parameters ν = 10−3, λ = ε = 10−4, M = 256.

Figure 1.1: Mass conservation errors.
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XII Congreso del Máster en Investigación Matemática
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1.1. Introduction

Dengue, a vector-borne disease, presents a significant incidence in tropical and subtropical
regions, posing a global public health challenge [23]. Mathematical modeling is employed to
understand its complex transmission dynamics—involving interactions among humans, Aedes
mosquito vectors, and environmental factors—and to inform the design of public health policies
[14]. This approach allows for the quantitative exploration of propagation mechanisms and the
assessment of the potential impact of various intervention strategies.

Initial compartmental epidemiological models, such as the SIR (Susceptible-Infected-Recovered)
model, established a fundamental framework for analyzing disease transmission. A primary limi-
tation of this model is that it does not incorporate the incubation period; that is, the latent phase
between exposure to the pathogen and the point at which an individual becomes infectious. To
explicitly represent this latency phase, SEIR (Susceptible-Exposed-Infected-Recovered) models
were subsequently developed. These models include an additional ’Exposed’ (E) compartment
for individuals who are infected but not yet infectious, a relevant feature for describing diseases
with a significant incubation period, such as dengue [17].

In vector-borne diseases like dengue, SEIR models are often extended to SEIR-SEI structures,
explicitly differentiating the human population (SEIR) from the vector population (SEI) [4].
This structure allows for modeling bidirectional transmission: from infected vectors to suscep-
tible humans and from infected humans to susceptible vectors. Variations exist, such as SIR-SI
models [19] or simple SEIR models [15]. The choice among these depends on the study objec-
tives and data availability, reflecting a trade-off between biological realism and model complexity.

The practical application of these SEIR-SEI models fundamentally depends on the accuracy of
their parameters (e.g., transmission rates, infectious periods, development rates). Direct mea-
surement of many of these parameters is complex; therefore, their estimation from observed
epidemiological data (calibration) is essential [18]. This process faces challenges such as data
quality (e.g., noise, underreporting) and parameter identifiability. Ensuring that parameters can
be uniquely and reliably estimated from available data constitutes a significant methodological
problem [16].
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To address the parameter estimation problem in complex models, metaheuristics such as Genetic 
Algorithms (GA) [7] and Particle Swarm Optimization (PSO) are employed. These global search 
methods efficiently explore high-dimensional parameter spaces without requiring derivatives and 
exhibit robustness against local optima. They have been applied to estimate parameters in Aedes 
vector population models [10], calculate the basic reproduction number (R0) for dengue [24, 15], 
and in general calibration studies of SEIR/SEI models [2, 21]. Furthermore, GAs have been used 
in problems related to optimal control [5, 6].

Dengue dynamics are influenced by climatic variables, primarily temperature and precipitation, 
which affect vector biology and viral replication [11]. Integrating these factors into the models is 
necessary to capture observed seasonality. This is achieved through functional dependencies of 
parameters on climate [8, 9] or through statistical models linking climate and incidence [3, 22]. 
The influence o f p henomena s uch a s t he E l N iño-Southern O scillation ( ENSO) i s particularly 
relevant in regions like Latin America [12, 1]. Climate models project potential changes in dengue 
incidence due to global warming [3], also highlighting the role of extreme events [13].

In this context, the present study aims to achieve the following specific o bjectives: fi rst, to 
apply an adapted SEIR-SEI model to simulate the dynamics of dengue transmission in a specific 
urban environment; second, to employ genetic algorithms to estimate key model parameters by 
fitting the model to observed historical data; third, to focus the analysis on the municipality of 
Villavicencio (Meta, Colombia), a region characterized by its endemicity [12, 13]; and fourth, to 
explore the implications of the calibrated model’s results for planning public health interventions 
aimed at mitigating the impact of dengue.

1.2. Model Formulation and Methodology

SEIR-SEI Model Structure

Compartmental models are standard tools in mathematical epidemiology. The basic SIR (Susceptible-
Infected-Recovered) model assumes an immediate transition from the susceptible to the infectious 
state. An extension of this model is the SEIR (Susceptible-Exposed-Infected-Recovered) model, 
which incorporates an .Exposed"(E) compartment to represent the latent incubation period, du-
ring which an infected individual is not yet infectious. This approach is applicable to diseases 
such as dengue [17].

In the specific case of vector-borne diseases like dengue, where the dynamics of the Aedes aegypti 
mosquito are fundamental, an SEIR-SEI structure is commonly used [4]. This structure combines 
an SEIR model for the human population (H) with an SEI model for the vector population (V ). 
The human compartments include Susceptible (SH ), Exposed (EH ), Infectious (IH ), and Recove-
red (RH ). The vector compartments encompass Susceptible (SV ), Exposed (EV ), and Infectious
(IV ). It is assumed that infected vectors remain in that state for their entire lives. This mo-
del allows for representing bidirectional transmission, where susceptible humans are infected by 
infectious vectors (IV ), and susceptible vectors become infected by biting infectious humans (IH ).

The system of ordinary differential equations (ODEs) describing the transmission dynamics in
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the human population in this study is:

dSH
dt

= µHNH − βV H(t)
SH IV
NV

− µHSH ,
dEH
dt

= βV H(t)
SH IV
NV

− (σH + µH)EH ,

dIH
dt

= σHEH − (γH + µH)IH ,

dRH
dt

= γHIH − µHRH .

Here, NH = SH+EH+IH+RH is the total human population, considered constant or slowly var-
ying due to the natural birth and death rate µH . The term βV H(t) is the effective time-dependent
transmission rate from vector to human, NV is the total vector population (considered constant
or calculated), σH is the rate at which exposed humans become infectious (inverse of the intrinsic
incubation period), and γH is the recovery rate of infectious humans.

For the vector population, the dynamics are represented by:

dSV
dt

= ΛV − βHV (t)
SV IH
NH

− µV SV ,
dEV
dt

= βHV (t)
SV IH
NH

− (σV + µV )EV ,

dIV
dt

= σVEV − µV IV .

In this system, ΛV is the recruitment rate of new susceptible vectors (birth rate), βHV (t) is the
effective time-dependent transmission rate from human to vector, µV is the natural mortality
rate of the vector, and σV is the rate at which exposed vectors become infectious (inverse of the
extrinsic incubation period, EIP). The total vector population is given by NV = SV +EV + IV .

Data Acquisition and Study Area

Figura 1.1: Map of the Department of Meta (Colombia), highlighting the location of the munici-
pality of Villavicencio (in red). The inset shows the location of the department within Colombia.

The data used in this study come from official Colombian sources for the period 2010-2022.
Epidemiological data, consisting of monthly records of dengue cases and associated mortality,
were obtained from the National Institute of Health (INS). Demographic data, corresponding to
annual population projections, come from the National Administrative Department of Statistics
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(DANE). Climatic variables, including monthly measurements of mean temperature and cumula-
tive precipitation, were supplied by the Institute of Hydrology, Meteorology and Environmental
Studies (IDEAM).

Cuadro 1.1: Pearson correlations between monthly climatic variables and reported dengue cases
for several Colombian municipalities (period 2010–2022, n = number of months with complete
data).

Municipality r(Temp., Cases) r(Precip., Cases) n

Villavicencio (Meta) 0.65 0.42 122
Espinal (Tolima) 0.62 0.50 105
Sincelejo (Sucre) 0.40 0.33 98
Leticia (Amazonas) 0.60 0.45 110
Girardot (Cundinamarca) 0.57 0.38 99

The municipality of Villavicencio, capital of the department of Meta (see Figure 1.1), was se-
lected as the case study. This choice was based on the availability of relatively complete and
consistent epidemiological, demographic, and climatic records for the period of interest. Further-
more, Villavicencio exhibits persistent reports of dengue and an observed correlation between
case incidence and climatic variables, particularly temperature, as shown in Table 1.1, making
it a suitable site for calibrating an SEIR-SEI model with climate forcing.

(a) Dengue Cases and Deaths (b) Annual Population Projections

(c) Monthly Precipitation (d) Mean Monthly Temperature

Figura 1.2: Overview of the data for Villavicencio: (a) Dengue cases and deaths (left axis: deaths,
right axis: cases). (b) Annual population projections. (c) Monthly precipitation (mm). (d) Mean
monthly temperature (°C). Period approx. 2010-2022.

Figure 1.2 presents an overview of the key data for Villavicencio used in this study: (a) the
time series of monthly dengue cases and reported deaths, (b) annual population projections,
(c) cumulative monthly precipitation, and (d) mean monthly temperature. These data form the
basis for model calibration and the assessment of climatic influence.
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Parameter Estimation using Genetic Algorithms

As mentioned in the Introduction, model calibration, i.e., the estimation of unknown para-
meters from observed data, is an essential step [18]. In this work, Genetic Algorithms (GA) [7],
a class of metaheuristics inspired by natural evolution, are used to perform this task. GAs are
suitable for optimizing parameters in complex and nonlinear systems like SEIR-SEI models [2].

The basic idea of a GA involves maintaining a population of candidate solutions (sets of parame-
ters) and iteratively applying genetic operators to improve the population’s fitness. The fitness
of each solution is measured by an objective function that quantifies the discrepancy between
the model output (using those parameters) and the actual observed data. The general steps are:

Initial Definitions: An initial population P (0) = {x(0)1 , x
(0)
2 , . . . , x

(0)
N } of N individuals is defined,

where each xi is a vector of parameters to be estimated. A fitness function f : x 7→ R is defined
such that f(x

(t)
i ) ≥ 0, where higher (or lower, depending on the formulation) values indicate a

better fit.

Step 1: Evaluation: In each generation t, the fitness of each individual is calculated: f (t)i = f(x
(t)
i )

for i = 1, . . . , N .

Step 2: Selection: Individuals are selected from P (t) to form an intermediate population M (t) =

{m(t)
1 , . . . ,m

(t)
N }. The selection probability of an individual x(t)i is often proportional to its relative

fitness: P (x
(t)
i ) = f

(t)
i /

∑N
j=1 f

(t)
j .

Step 3: Crossover: Selected pairs of individuals (parents) from M (t) are combined to generate a
new population of offspring Y (t) = {y(t)1 , . . . , y

(t)
N }. The crossover operation C exchanges genetic

material (parameter values) between the parents: (y
(t)
2k−1, y

(t)
2k ) = C(m

(t)
2k−1,m

(t)
2k ).

Step 4: Mutation: A mutation operation M is applied to each offspring y(t)i with a small proba-
bility µ. Mutation introduces small random alterations to the parameters: z(t)i = M(y

(t)
i ) with

probability µ, or z(t)i = y
(t)
i otherwise. This generates the population Z(t) = {z(t)1 , . . . , z

(t)
N }.

Step 5: Replacement and Iteration: The population for the next generation P (t+1) is formed from
Z(t) (often P (t+1) = Z(t) in simple GAs, or using replacement strategies such as elitism, which
preserves the best individuals). The process repeats from Step 1 until a termination criterion is
met (e.g., maximum number of generations, fitness convergence).

In this study, the objective function to be minimized by the GA is the Root Mean Square
Error (RMSE) between the dengue cases simulated by the model (Casesmodel(t)) and the actual
observed cases (Casesreal(t)) over a time period T :

RMSE =

√√√√ 1

T

T∑

t=1

(
Casesmodel(t)− Casesreal(t)

)2
.

The result of the optimization process is the set of parameters that yields the lowest RMSE,
representing the best fit found by the algorithm. Table 1.2 shows examples of other infectious
diseases where this combination of SEIR models and GA has been applied.
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Cuadro 1.2: Examples of infectious diseases modeled with SEIR variants and calibrated using
Genetic Algorithms.

Disease Application of SEIR with GA (Conceptual Exam-
ples)

COVID-19 Parameter fitting (transmission, recovery) for peak pre-
diction [2].

Influenza Calibration of seasonal dynamics, evaluation of optimal
vaccination strategies.

Measles Estimation of contact rates, optimization of public health
interventions.

Ebola Fine-tuning complex models to understand transmission
patterns.

Dengue Optimization of intervention timing and vector control
strategies [15, 6].

Model Implementation Details

To reflect the influence of external factors on transmission, seasonal or climatic forcing is
incorporated. This is achieved by allowing the transmission rates βV H(t) and/or βHV (t) to
vary over time. This variation can be modeled as a periodic function (e.g., βV H(t) = β0V H [1 +
α cos(2πt/T )]) or be directly driven by monthly climate data, such as temperature, following
functional relationships established in the literature [11, 10]. Additionally, to emulate the oc-
currence of new outbreaks or case importation, some implementations allow for the periodic
reintroduction of a small number of infectious individuals (IH) or infectious vectors (IV ) into
the system.

Cuadro 1.3: Reference values, estimation ranges, and initial conditions considered for the SEIR-
SEI dengue model in Villavicencio.

Parameter / Data Value / Range / Observation

Human population (NH) ≈ 50,000 - 85,000 (variable annually, Fig. 1.2b)
Initial SH(0) ≈ 0,95×NH(0)
Initial IH(0) Based on reported cases at start / small value (e.g., 10-100)
Initial RH(0) Fraction based on seroprevalence or 0
Initial EH(0) 0 or small fraction of IH(0)
Initial SV (0) Proportion of NH (e.g., 1-10 times) or based on carrying capacity KV

Initial EV (0), IV (0) Small fractions of total vectors (e.g., 1%)

βHV (human → vector) Estimated by GA (range e.g., [0.1, 1.0] day−1)
βV H (vector → human) Estimated by GA (range e.g., [0.1, 1.0] day−1)
σH (human incubation−1) Fixed (e.g., 1/5 day−1) or Estimated (range e.g., [1/10, 1/3] day−1)
σV (vector incubation−1) Fixed (e.g., 1/10 day−1) or Estimated (range e.g., [1/14, 1/7] day−1)
γH (human recovery−1) Fixed (e.g., 1/7 day−1) or Estimated (range e.g., [1/10, 1/4] day−1)
µH (human mortality/birth) Fixed (e.g., ≈ 1/(75× 365) day−1)
µV (vector mortality−1) Fixed (e.g., 1/14 day−1) or Estimated (range e.g., [1/21, 1/7] day−1)
ΛV (vector birth rate) Often ΛV = µVNV for disease-free equilibrium
Forcing parameters (α, T ) Estimated or based on climate data
Reintroduction parameters (ε, freq.) Defined for specific scenarios

Numerical integration of the ODE system is performed using standard methods, such as higher-
order Runge-Kutta algorithms (e.g., implemented in the solve_ivp function from the SciPy
library in Python), calculating the evolution of the compartments in discrete time steps (daily
or monthly). Model initialization requires defining the compartment values at t = 0. Typically,
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SH(0) is set close to the total population NH , with a small initial fraction of individuals in EH(0)
and/or IH(0) based on historical data from the beginning of the simulation period. Similarly,
initial conditions are defined for the vector population SV (0), EV (0), IV (0), often assuming a
proportion relative to the human population or an equilibrium state. Table 1.3 summarizes the
parameter ranges explored by the GA and the initial conditions used or considered in this type
of model.

The combination of seasonal forcing (driven by climate) and possible periodic reintroductions
are key mechanisms that allow SEIR-SEI models to generate multi-wave dynamics or recurrent
outbreaks, instead of a single epidemic that depletes susceptibles, thus seeking greater corres-
pondence with the incidence patterns observed in real data such as those in Figure 1.2a.

1.3. Numerical experiments

The calibrated SEIR-SEI model, incorporating seasonal forcing and periodic reintroductions,
was used to simulate the dynamics of dengue in Villavicencio. Figure 1.3 compares the simulated
fraction of infected individuals (IH/NH , solid line) with the observed data (converted to fraction,
dashed line) over time. The final model simulation captures the occurrence of multiple epidemic
waves, a characteristic present in the real data for the analyzed period.

Figura 1.3: Comparison of the fraction of the infected population (IH/NH) simulated by the
SEIR-SEI model with seasonality and reintroductions (solid line) versus the observed data in
Villavicencio (dashed line) over time (months).

The quantitative fit of the final calibrated model to the observed data from Villavicencio
resulted in a Root Mean Square Error (RMSE) of 0.00047, a Mean Absolute Error (MAE) of
0.00037, and a Mean Absolute Percentage Error (MAPE) that was not interpretable due to the
presence of near-zero values in the observed data.

Table 1.4 presents the final values of the key SEIR-SEI model parameters estimated through the
calibration process with genetic algorithms, along with their 95
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Cuadro 1.4: Final estimated parameters of the calibrated SEIR-SEI model for Villavicencio, with
95% Confidence Intervals (CI).

Parameter Estimated value 95% CI Unit

βHV (human → vector) 0.52 [0.44, 0.60] days−1

βV H (vector → human) 0.39 [0.32, 0.47] days−1

σH (human incubation) 0.18 [0.14, 0.22] days−1

σV (vector incubation) 0.22 [0.18, 0.26] days−1

γH (human recovery) 0.14 [0.12, 0.17] days−1

µV (vector mortality) 0.071 [0.065, 0.079] days−1

During the calibration process, the performance of different genetic algorithm variants in mi-
nimizing the RMSE was evaluated. Figure 1.4 illustrates the convergence trajectory (RMSE as
a function of generations) for some of the tested variants. Table 1.5 summarizes the minimum
RMSE achieved and the average execution time for the selected variants, indicating differences
in optimization efficiency and effectiveness. The NSGA-II-lite and SPEA2-lite variants achieved
the lowest RMSE values in these comparative tests.

Figura 1.4: Comparison of convergence (RMSE as a function of generations) for five genetic
algorithm variants used for parameter estimation of the SEIR-SEI model.

Cuadro 1.5: Performance comparison between Genetic Algorithm variants: Minimum RMSE
achieved during optimization and average execution time.

GA Variant Minimum RMSE Average Time (s)

Standard GA (Classic) 0.0167 0.25
Elitist GA (N1) 0.0102 0.22
NSGA-II-lite (N2) 0.0078 0.25
SPEA2-lite (N3) 0.0075 0.29

To evaluate the relative contribution of the model components that enable the generation of
multiple waves, simulations were performed under hypothetical scenarios, selectively removing
seasonal forcing and/or periodic reintroductions. Table 1.6 compares the goodness-of-fit metrics
(RMSE and R²) obtained in these scenarios with those of the complete final model. The numerical
results show that omitting either of these components substantially deteriorates the model’s fit
to the observed data, increasing the RMSE and reducing R².
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Cuadro 1.6: Evaluation of the SEIR-SEI model fit under different hypothetical scenarios, remo-
ving key components.

Scenario RMSE R²

Without reintroduction 0.0167 0.78
Without seasonality 0.0153 0.80
Without reintroduction or seasonality 0.0191 0.73
Seasonality + Reintroduction (Final Model) 0.0083 0.91

Numerical experiments indicate that the joint incorporation of seasonal forcing (or climate-
dependent parameters) and periodic reintroductions is necessary for the SEIR-SEI model to 
reproduce the multi-wave dynamics observed in the real data from Villavicencio (Table 1.6). The 
absence of one or both factors results in a single-wave pattern or a significantly poorer fit. The 
use of genetic algorithms allowed exploration of the parameter space and obtaining sets of values 
that reduce the discrepancy between simulations and observations (Table 1.4), achieving a consi-
derable quantitative fit with the final model (R²=0.91). Models that consider climate-dependent 
parameters (reflected in seasonality) and allow for additional external infections (reintroductions) 
align better with the real data.

1.4. Conclusions

The developed SEIR-SEI model, which incorporates seasonal forcing and periodic reintro-
ductions, demonstrated the capability to capture the observed dengue transmission dynamics 
in Villavicencio. The model parameters were calibrated using genetic algorithms, achieving a 
quantitative fit to historical incidence data.

The results from the calibrated model suggest that public health interventions implemented in 
a timely manner, based on the estimated periods of maximum vector proliferation and human 
transmission, can reduce and delay dengue epidemic peaks. The model analysis identified three 
main intervention strategies. The first consists of the systematic elimination of mosquito breeding 
sites, strategically initiated (e.g., day 30 of the simulated period) to minimize the increase in 
the adult vector population (expected between days 45-60); this action includes inspecting and 
eliminating stagnant water in high-risk areas, supported by community outreach. The second 
strategy is staggered fumigation, starting approximately two weeks before the expected rainfall 
peaks (e.g., day 45), with applications at regular intervals (e.g., days 45, 60, 75) and entomolo-
gical monitoring (e.g., ovitraps) to adjust frequency if necessary. The third strategy is based on 
surveillance and early warning systems, monitoring key indicators (climate data, cases) from the 
beginning, defining alert thresholds (e.g., a  20

Simulations indicate that the coordinated implementation of these measures (breeding site eli-
mination, timely fumigation, and active surveillance) generates a synergistic effect, resulting in 
dengue incidence peaks of lower magnitude and later onset. The success of these interventions also 
depends on active community participation (e.g., eliminating containers, reporting symptoms), 
requiring continuous communication strategies. Additional sensitivity analyses could refine the 
optimal start time for each policy. Model-based planning can help optimize resource allocation 
for vector control.

Future work is recommended to refine the seasonal forcing functions by incorporating more
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detailed climate data. The application of multi-objective optimization approaches could explicitly
evaluate the trade-off between the cost of interventions and their epidemiological impact. Finally,
validating the model with datasets from different regions or years, and extending it to consider
multiple dengue virus serotypes, would constitute relevant methodological advancements.
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1.1 Introduction

In this paper we will see how to relate operators by Fourier transform in three different contexts:
in RN , TN and ZN .

We will start seeing how the Fourier transform is defined in the three contexts, and how to
recover them by means of the inverse formula.

Let f ∈ L1(RN ), its Fourier transform is defined by

f̂(ξ) =

∫

RN

f(x)e−2πix·ξ dx, ξ ∈ RN .

The inverse Fourier transform of f̂(ξ), when f̂(ξ) ∈ L1(RN ), is defined by

f(x) = (f̂)∨(x) =
∫

RN

f̂(ξ)e2πix·ξ dξ, a.e. x ∈ RN .

Identifying TN with the interval [−1
2 ,

1
2 ]
N we have that:

For a given function f ∈ L1(TN ), its Fourier coefficients are given by

f̂(n) =

∫

TN

f(x)e−2πix·n dx, n ∈ ZN .

We can recover the function f from its Fourier coefficients under some regularity conditions by

f(x) =
∑

n∈ZN

f̂(n)e2πix·n, x ∈ TN .

Finally, given a sequence a = {a(n)}n∈ZN ∈ ℓ1(ZN ) we have that:
Its Fourier transform is the periodic and continuous function given by

â(ξ) =
∑

n∈ZN

a(n)e−2πiξ·n, ξ ∈ TN .
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We can recover the sequence a from its Fourier transform â by:

a(n) =

∫

TN

â(ξ)e2πiξ·n, n ∈ ZN .

Let us continue by recalling the fundamental property of the Fourier transform respect to
the convolution product in all three continuous, discrete and periodic contexts. Here K denotes
a convolution kernel, and K̂ its transform.

̂(K ∗ f)(ξ) = K̂(ξ)f̂(ξ) = m(ξ)f̂(ξ), ξ ∈ RN .

̂(K ∗ f)(n) = K̂(n)f̂(n) = m(n)f̂(n), n ∈ ZN .

̂(Kd ⋆ a)(ξ) = K̂(ξ)f̂(ξ) = m(ξ)f̂(ξ), ξ ∈ TN .
There are many different works in the classic literature that relate convolution operators in

RN , TN , y ZN . These operators can be defined by the action of the corresponding multipliers
on the side of the Fourier transform, they are the so-called Fourier multipliers.

Let m be a continuous function in RN , we define

(Cf)(x) := (Tmf)(x) =

∫

RN

m(ξ)f̂(ξ)e2πix·ξ dξ, x ∈ RN ,

for a continuous function f defined in RN .

(Pg)(x) := (T̃mg)(x) =
∑

k∈ZN

m(k)ĝ(k)e2πik·x, x ∈ TN ,

for a periodic function g defined in TN .

(Da)(n) :=

∫

[−1/2,1/2]N
m(ξ)P (ξ)e2πin·ξ, n ∈ ZN ,

for a sequence a = {a(n)}n in ZN and P (ξ) =
∑

m

a(m)e−2πim·ξ.

We are going to consider m ∈ L∞(RN ), for it is a necessary condition in order to get that
the operator is well-defined, and in consequence the multiplier is essentially bounded. We define
the operator Tm that is bounded in L2(RN ) by

(̂Tmf)(ξ) = m(ξ)f̂(ξ).

By Plancherel’s theorem (∥f∥2 = ∥f̂∥2), so Tmf is well defined if f ∈ L2 and, moreover

∥Tmf∥2 ≤ ∥m∥∞∥f∥2.
In fact, respect to the norm of the operator Tm in L2, ∥Tm∥, we have that

∥Tm∥ = ∥m∥∞.
When Tm can be extended as a bounded operator in Lp, it is said that m is a Fourier

multiplier in Lp. Usually, the operators defined by Fourier multipliers are defined under a dense
class, such as Schwartz class in Lp, and they are extended by density to the whole space Lp.

In RN , under the assumption that m ∈ L∞, we want to see when the convolution operator
of the kernel K ∈ S ′ (tempered distributions), defined for functions f ∈ S (Schwartz class) by

Tmf = f ∗K
extends to a bounded operator in Lp, where K̂ = m.

If G is one of the groups RN , TN or ZN , we will denote byMp(G) the space of the multipliers
that define bounded operators in Lp(RN ), ℓp(ZN ) y Lp(TN ), respectively.
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1.2 Restriction of multipliers in RN to ZN

In this section we will see that, given a bounded multiplier in its continuous version and under
some certain assumptions for the multiplier, we can obtain that the multiplier in its periodic
version is also bounded. This fact is not quite surprising since the second form of the multiplier
is the restriction to the integer numbers of the first form in the side of the Fourier transform.

In order to prove such Theorem, we will require the following two Lemmas, we present their
proofs here for the sake of completeness. The first one is a technical convergence lemma that
can be found in [3, Lemma 3.9, Chapter 7].

Lemma 1.2.1. Let f be a continuous and periodic function in RN , then

lim
ϵ→0

ϵN/2
∫

RN

f(x)e−ϵπ|x|
2
dx =

∫

QN

f(x)dx , with QN = [0, 1]N . (1.2.1)

Proof. Observe that we have the equality if we take a trigonometric polynomial with the form
f(x) = e2πim·x, where m ∈ ZN and x ∈ RN . This is because the function f is an exponential
type function of Fourier integrand, that in (1.2.1) is integrated as a gaussian function. Knowing
that the Fourier transform of a Gaussian is again a Gaussian, then, since

∫

RN

e−ϵπ|x|
2
e2πim·xdx = ϵ−N/2e−π|m|2/ϵ,

we have that, in (1.2.1),

lim
ϵ→0

ϵN/2
∫

RN

f(x)e−ϵπ|x|
2
dx = lim

ϵ→0
e−π|m|2/ϵ

{
1 if m = 0 ∈ ZN

0 if m ̸= 0 ∈ ZN .

And from here we obtain (1.2.1) for f(x) = e2πim·x, since its integral in the fundamental cube
is the same that we have in the limit.

The Lemma follows for f a continuous and periodic function by approximating f uniformly
by trigonometric polynomials that are obtained as linear combinations of {e2πim·x}m∈ZN .

The following Lemma connects the two versions of the multiplier, we can find it in [3, Lemma
3.11, Chapter 7].

Lemma 1.2.2. Let P and Q be trigonometric polynomials, Tλ : Lp(RN )→ Lp(RN ) a multiplier-
type operator. T̃λ is an element of the basis of trigonometric polynomials. Let wδ(y) := e−πδ|y|

2
,

δ > 0, y ∈ RN . Then, for α, β > 0 such that α+ β = 1, we have that:

lim
ϵ→0

ϵN/2
∫

RN

Tλ(Pwϵα)(x)Q(x)wϵβ(x)dx =

∫

QN

(T̃λP )(x)Q(x)dx. (1.2.2)

Proof. It will be enough to prove it for P (x) = e2πir·x and Q(x) = e2πik·x, r, k ∈ ZN since
(1.2.2) is linear in P and in Q. Using the expressions wϵα(y) = e−πϵα|y|

2
, wϵβ(y) = e−πϵβ|y|

2
,

Plancherel’s and Fubini’s theorems, it is easy to see that

ϵN/2
∫

RN

Tλ(Pwϵα)(x)Q(x)wϵβ(x)dx = ϵN/2
∫

RN

λ(x)φ(x)ψ(x) dx, (1.2.3)

where φ and ψ are the following Fourier transforms

φ(x) = (e2πir·xe−πϵα|x|
2
)̂ = e−π|x−r|

2/(αϵ)(αϵ)−N/2

ψ(x) = (e2πik·xe−πϵβ|x|
2
)̂ = e−π|x−k|

2/(βϵ)(βϵ)−N/2.

We distinguish now two cases
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• r ̸= k: Since r and k are integers, we have that |r − k| ≥ 1. Moreover, for being λ a
multiplier, we can assume that it is in L∞, i.e, |λ(x)| ≤ A. With this, we can bound the
left hand side of (1.2.2) by

ϵN/2A

∫

RN

e−π|x−r|
2/(αϵ)(αϵ)−N/2e−π|x−k|

2/(βϵ)(βϵ)−N/2 dx

≤ ϵN/2A
(∫

|x−r|≥ 1
2

e−π|x−r|
2/(αϵ)(αϵ)−N/2e−π|x−k|

2/(βϵ)(βϵ)−N/2 dx

)
+

ϵN/2A

(∫

|x−k|≥ 1
2

e−π|x−r|
2/(αϵ)(αϵ)−N/2e−π|x−k|

2/(βϵ)(βϵ)−N/2 dx

)
,

where the integration domains cover all RN . Observe that in the first integral, the factor
ϵN/2e−π|x−r|

2/(αϵ)(αϵ)−N/2 tends uniformly to 0 when ϵ goes to 0, while the Gaussian factor
e−π|x−k|

2/(βϵ)(βϵ)−N/2 integrates 1 if the integral extends to the whole space RN . Then,
the integral over |x − r| ≥ 1

2 tends to 0 when ϵ → 0. The same argument applies for the
integral over |x− k| ≥ 1

2 , from where we conclude that the left hand side of (1.2.2) is 0.

Now, since P is a trigonometric polynomial, the periodic multiplier acts over P as follows:

(T̃λ)(x) = λ(r)e2πir·x,

for the corresponding coefficient λ(r), r ∈ ZN . So the right hand side of (1.2.2) is

∫

QN

(T̃λP )(x)Q(x)dx =

∫

QN

λ(r)e2πir·xe−2πik·x dx =

∫

QN

λ(r)e2πi(r−k)·x dx = 0,

for being the integrand of a complex exponential of period a divisor of the sidelength of
the fundamental cube. We have seen that, in this case, both sides of (1.2.2) are 0.

• r = k: The left hand side of (1.2.2) is

lim
ϵ→0

(ϵαβ)−N/2
∫

RN

λ(x)e
−π(|x−r|2/ϵ)( 1

α
+ 1

β
)
dx = lim

ϵ→0
(ϵαβ)−N/2

∫

RN

λ(x)e
π(|x−r|2/ϵ)( 1

αβ
)
dx.

(1.2.4)

The result is an integral of Gauss-Weierstrass of λ. Taking into account [3, Theorem 1.25,
Chapter 1], since r is a Lebesgue point of λ, it is a continuity point by hypothesis, we conclude
that the limit (1.2.4) takes the value λ(r). This same value is the same that we obtain directly
for r = k in the right hand side of (1.2.2):

∫

QN

(T̃λP )(x)Q(x)dx =

∫

QN

λ(r)e2πir·xe−2πir·x dx = λ(r).

Finally, we present the Theorem mentioned above [3, Chapter 7, Theorem 3.8].

Theorem 1.2.3. Let 1 ≤ p ≤ ∞, λ ∈Mp(RN ) and Tλ the Fourier multiplier operator associated
to the function λ that is continuous in every point of ZN . Then, there exists a unique periodic
operator T̃λ defined by

(T̃λf)(x) =
∑

n∈ZN

λ(n)a(n)e2πi n·x,
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for

f(x) =
∑

n∈ZN

a(n)e2πi n·x,

such that {λ(n)}n∈Z ∈Mp(ZN ). Moreover

∥T̃λ∥ ≤ ∥Tλ∥.

Proof. We will do a distinction of cases for p.

• 1 < p < +∞: Let P and Q trigonometric polynomials, and let wϵα and wϵβ be the weight
functions defined in Lemma 1.2.2. Then, by Hölder’s inequality and Lemma 1.2.2 we get
that

∫

QN

(T̃λP )(x)Q(x)dx
Lemma 1.2.2

= lim
ϵ→0

ϵN/2
∣∣∣∣
∫

RN

(Tλ(Pwϵα))(x)Q(x)wϵβ(x)dx

∣∣∣∣

≤ lim
ϵ→0

ϵN/2∥Tλ∥∥Pwϵα∥p∥Qwϵβ∥q.

Take now α = 1
p and β = 1

q , that they satisfy the condition α + β = 1 since they are
conjugate exponents. Then

∥Tλ∥ lim
ϵ→0

ϵN/2∥Pw ϵ
p
∥p∥Qw ϵ

q
∥q

= ∥Tλ∥ lim
ϵ→0

[
ϵN/2

∫

RN

|P (x)|pe−ϵπ|x|2dx
] 1

p
[
ϵN/2

∫

RN

|Q(x)|qe−ϵπ|x|2dx
] 1

q

Lemma 1.2.1
= ∥Tλ∥∥P∥Lp(QN )∥Q∥Lq(QN ).

Taking supremum ∥P∥Lp(QN ) ≤ 1 and ∥Q∥Lq(QN ) ≤ 1, we conclude that ∥T̃λ∥ ≤ ∥Tλ∥.

• p = 1: Since T ∈ (L1(RN ), L1(RN )) ensures us that the multiplier λ is a finite Borel

measure λ = µ. Let λ̂ = µ̂ be its transform. Then, by
∑

r∈ZN µ̂(r)e2πir·x is the Fourier
series of a measure µ̃ in TN and ∥dµ̃∥ ≤ ∥dµ∥, hence µ̃ is finite. Finally, by applying [3,
Theorem 3.4, Chapter 7] we obtain that T̃ ∈ (L1(TN ), L1(TN )) and ∥T̃∥ = ∥dµ̃∥ ≤ ∥dµ∥ =
∥T∥.

• p =∞: By duality, we have that

(L∞(RN ), L∞(RN )) = (L1(RN ), L1(RN )).

Moreover, ∥T∥L1(RN ) ≤ ∥T∥L∞(RN ). Then, by doing the same arguments as we did in the

case p = 1, it is clear that T̃ ∈ (L1(TN ), L1(TN )). Now, by [3, Theorem 3.4, Chapter 7]
there exists a measure µ in TN such that ∥dµ∥ = ∥T̃∥ and T̃ f = f ∗ dµ. For f ∈ L∞(TN ),
∥f ∗ dµ∥ ≤ ∥f∥L∞(TN )∥dµ∥ =⇒ ∥T̃∥L∞(TN ) ≤ ∥T̃∥L1(TN ) ≤ ∥T∥L1(RN ) ≤ ∥T∥L∞(RN ).

Observation 1.2.4. Observe that the hypothesis: ”λ continuous in every point of ZN” can be
relaxed to the following one: ”every point of ZN is a Lebesgue point of λ”, that is what we are
really using in the proof of Lemma 1.2.2.
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1.3 Extension of multipliers in ZN to RN

The result that we present in this section is the reciprocal of Theorem 1.2.3, i.e., now we are
going to see that if we have a periodic Fourier multiplier, then we can obtain the continuous
Fourier multiplier. For the proof of such result we will make use of the following Lemma.

Lemma 1.3.1. There exists a non negative function η ∈ C0(RN ) such that

(a) η(0) = 1,

(b)
∑

m∈ZN (η(x+m))p = 1.

Proof. Consider a function η1 ∈ C0(RN ) such that η1(0) = 1, y η1(m) = 0 if m ∈ ZN\ {0} and
η(x) > 0 for every x ∈ QN . Define now

η2(x) =
η1(x)∑

m∈ZN η(x+m)
,

observe that

(a) By the definition properties of η1 we get that

η2(0) =
η1(0)∑

m∈ZN η1(m)
=

1

η1(0)
= 1.

(b) Summing η2 in all of the elements of the reticle ZN

∑

m∈ZN

η2(m) =

∑
m∈ZN η1(m)∑
m∈ZN η1(m)

= 1.

We conclude that the function we were in search for is η = η
1
p

2 .

Observation 1.3.2. In the following result, Π(TN ) will denote the trigonometric polynomials
in the torus, and D will denote the functions of fast decreasing.

Let us now present the Theorem before mentioned.

Theorem 1.3.3. Let λ be a continuous function in RN . Suppose that for every ϵ > 0 there
exists an operator T̃ϵ ∈

(
Lp(TN ), Lp(TN )

)
given by

(T̃ϵf)(x) ∼
∑

m∈ZN

λ(ϵm)ame
2πimx,

where {am}m∈ZN =
{
f̂(m)

}
m∈ZN

. Suppose also that ∥T̃ϵ∥ is uniformly bounded. Then, λ is a

multipier of type
(
Lp(RN ), Lp(RN )

)
, T is its corresponding operator, and ∥T∥ ≤ supϵ>0 ∥T̂ϵ∥.

Proof. Observe first that the case p =∞ can be reduced to the case p = 1.
Let f(x) = e2πimx and g(x) = e2πikx. On the one hand

∫

TN

(T̃ϵf)(x)g(−x)dx =

∫

TN

λ(ϵm)e2πimxe−2πikxdx =

∫

TN

λ(ϵm)e2πi(m−k)xdx =

{
0 si m ̸= k,

λ(ϵm) si m = k.
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On the other hand
∫

TN

(T̃ϵg)(x)f(−x)dx =

∫

TN

λ(ϵm)e2πikxe−2πimxdx =

∫

TN

λ(ϵm)e2πi(k−m)xdx =

{
0 si m ̸= k,

λ(ϵm) si m = k.

Obtaining, by linearity, that for f, g ∈ Π(TN )
∫

TN

(T̃ϵf)(x)g(−x)dx =

∫

TN

(T̃ϵg)(x)f(−x)dx.

By doing a duality argument, we know that

∥T̃ϵ∥1 ≤ ∥T̃ϵ∥∞.

Then, if p = 1 and we find an operator T ∈
(
L1(RN ), L1(RN )

)
whose multiplier is λ and that

satisfies the following inequality

∥T∥1 ≤ sup
ϵ>0
∥T̂ϵ∥1,

in particular T ∈
(
L∞(RN ), L∞(RN )

)
, and

∥T∥∞ ≤ sup
ϵ>0
∥T̂ϵ∥∞.

This way, all reduces to show the case 1 ≤ p <∞.

Suppose, by simplicity, that ∥T̂ϵ∥p ≤ 1 for every ϵ > 0, as a consequence of the arguments
used in [3, Theorem 3.1, Chapter 7], we have that |λ(ϵm)| ≤ 1 for every m ∈ Λ and ϵ > 0.
Notice that the set

{
ϵm | ϵ > 0, m ∈ ZN

}
is dense in RN , therefore λ is bounded. Observe that

if f ∈ L2(RN ), then λf̂ ∈ L2(RN ). In particular we can define Tf for f ∈ D as the function
whose Fourier transform is λf̂ , i.e.

T̂ f(x) = λ(x)f̂(x).

Our goal now is to show that ∥Tf∥p ≤ ∥f∥p. For that, take a function f ∈ D and consider the
dilation

fϵ(x) =
1

ϵN
f(
x

ϵ
),

and then, periodize it

f̃ϵ(x) = ϵ−N
∑

m∈ZN

f(
x+m

ϵ
).

Applying Poisson summation formula, we can express the dilated and periodized function as
follows

f̃ϵ(x) =
∑

m∈ZN

f̂(ϵm)e2πimx,

since,
̂̃
fϵ(x) = ϵN f̂(ϵx). Observe now that, if we apply the operator T̃ϵ to the function we have

just defined, we obtain the following function

ϵN
(
T̃ϵf̃ϵ

)
(ϵx) = ϵN

∑

m∈ZN

λ(ϵm)f̂(ϵm)e2πiϵmx.
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Now, recall that λ is bounded and f̂ ∈ S, then the right hand expression of the previous equality
is a Riemann sum. So, taking limits when ϵ→ 0, we have that such expression converges to

∫

RN

λ(t)f̂(t)e2πixtdt = Tf(x).

Obtaining that λ is a Fourier multiplier and T is its corresponding operator. Let us see now the
bound on the norm. We have just obtained that

lim
ϵ→0

ϵN (T̃ϵf̃ϵ)(ϵx) = Tf(x).

So, applying Lemma 1.3.1, we know that there exist a function η compactly supported such that
η(0) = 1. Then, by limit properties we have that

lim
ϵ→0

ϵN (T̃ϵf̃ϵ)(ϵx)η(ϵx) = Tf(x) ∀x ∈ RN .

Hence, applying Fatou’s lemma we deduce that

∥Tf∥p =
∫

RN

|Tf(x)|pdx =

∫

RN

lim
ϵ→0

ϵNp
∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)

∣∣∣
p
dx ≤

≤ lim inf
ϵ→0

ϵNp
∫

RN

∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)
∣∣∣
p
dx.

Let us bound the last integral in the previous inequality. By doing a change of variables we
obtain that

ϵNp
∫

RN

∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)
∣∣∣
p
dx = ϵN(p−1)

∫

RN

∣∣∣(T̃ϵf̃ϵ)(u)η(u)
∣∣∣
p
du =

ϵN(p−1)
∑

m∈ZN

∫

QN

∣∣∣(T̃ϵf̃ϵ)(u+ n)η(u+ n)
∣∣∣
p
du =ϵN(p−1)

∫

QN

∣∣∣(T̃ϵf̃ϵ)(u+ n)
∣∣∣
p ∑

m∈ZN

|η(u+ n)|p du.

But, by Lemma 1.3.1 we know that
∑

m∈ZN |η(u+ n)|p = 1, then

ϵNp
∫

RN

∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)
∣∣∣
p
dx = ϵN(p−1)

∫

QN

∣∣∣(T̃ϵf̃ϵ)(u+ n)
∣∣∣
p
du = ϵN(p−1)∥T̃ϵf̃ϵ∥pp ≤ ϵN(p−1)∥f̃ϵ∥pp.

But now we know that, for ϵ sufficient small, ϵ−Nf(xϵ ) is in the fundamental cube, QN . Then,
for such ϵ, we can rewrite the previous inequality as follows

ϵNp
∫

RN

∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)
∣∣∣
p
dx ≤ ϵN(p−1)

∫

QN

∣∣∣f̃ϵ(x)
∣∣∣
p
dx =

ϵN(p−1)

∫

RN

∣∣∣ϵ−Nf
(x
ϵ

)∣∣∣
p
dx =

∫

RN

|f(x)|pdx = ∥f∥pp.

Observe that, what we have just obtained is

∥Tf∥p ≤ lim inf
ϵ→0

ϵNp
∫

RN

∣∣∣(T̃ϵf̃ϵ)(ϵx)η(ϵx)
∣∣∣
p
dx ≤

∫

RN

|f(x)|pdx.

Hence
∥Tf∥p ≤ ∥f∥p.

Which leads us to the equality that we were searching

∥T∥ ≤ sup
ϵ>0
∥T̃ϵ∥.

So we have obtained the Theorem for a function f ∈ D, which is a dense class in the space
Lp(RN ) for 1 ≤ p <∞. For f ∈ Lp(RN ), proceed by density.
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1.4 Restriction of multipliers in RN and ZN

Now, we want to explore the raltionship between the continuous and the discrete case following
the scheme presented in [1]. In the discrete case, the Fourier transform makes us work with
periodic functions. First let us set all the notation that we are going to use in this section.

Definition 1.4.1. Let f be a function defined in RN , denote by (f)d the restriction of f to ZN .

Previously, we talked about the Schwartz class, now we are going to use a family of functions
that form a subset of the Schwartz class: Functions of type R-exponential.

Definition 1.4.2. We will say that a function G in RN is of type R-exponential if the support
of its transform forms a subset of the box [−R,R]N .

Finally, we will present the notation of the discrete convolution.

Definition 1.4.3. Let K be a convolution kernel under RN , and let φ be a function in the same
space. We will denote by Kφ the convolution between K and φ, i.e, Kφ = K ∗ φ.

Apart from these definitions, we will make use of the well-known interpolation theorem of
Riesz-Thorin. A more general version of this result can be found in [3, Chapter 5].

Theorem 1.4.4 (Interpolation of Riesz-Thorin). Let Ω be a measure space, if we have a linear
and continuous operator T : Lp(Ω)→ Lp(Ω) for p = p1 and p = p2, then, it is continuous for pt
with 1

pt
= 1−t

p1
+ t

p2
for every t ∈ [0, 1].

With all the notation set, let us move to presenting the two lemmas that we are going to
need for obtaining a discrete multiplier from a continuous one. The first Lemma talks about
the discretization effect of a function in its norm. More specifically, it says that for a function
in Lp(RN ), its discretization belongs to ℓp(ZN ).

Lemma 1.4.5. Let 1 ≤ p ≤ ∞. Then, there exists a constant C such that:

∥(g)d∥pℓp ≤ C
p∥g∥pLp

for every g of R-exponential type.

Proof. We will show it first for R = 1 and for the cases p = 1,∞. After that, by applying
Riesz-Thorin interpolation theorem, Theorem 1.4.4, we will obtain the desired result for every
p.

First, the case p =∞ is clear, since

sup
m∈ZN

|g(m)| ≤ sup
x∈RN

|g(x)|.

For the case p = 1 we will assume that R = 1. Take a function ψ such that suppψ ⊆ [−2, 2]N and
ψ̂(ξ) = 1 when ξ ∈ [−1, 1]N . Then (g ∗ψ)â(ξ) = ĝ(ξ)ψ̂(ξ) = ĝ(ξ) since for ξ ∈ [−1, 1]N ψ̂(ξ) = 1,
and in the other case ĝ(ξ) = 0. By the Inversion theorem we have that (ψ ∗ g)(x) = g(x) and:

∑

m∈ZN

|g(m)| ≤
∑

m∈ZN

∫

RN

|g(x)||ψ(m− x)|dx =

∫

RN

|g(x)|
∑

m∈ZN

|ψ(m− x)|dx ≤ C∥g∥L1 .

Since, for being ψ a function in the Schwartz class, there exists C a bound of
∑

m∈ZN |ψ(m−x)|.
Applying Riesz-Thorin interpolation theorem, we obtain the result for R = 1.
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If R ̸= 1, define α = ⌊R⌋+ 1, therefore g is of α-exponential type, and the function g
( ·
α

)
is

of 1-exponential type and

∑

m∈ZN

|g(m)|p ≤
∑

m∈ZN

|g(m
α
)|p ≤ Cp

∫

RN

∣∣∣g
(x
α

)∣∣∣
p
dx = CpαN∥g∥pLp .

On the other hand, for the proof of the main theorem of this section, we will define a function
from a sequence in ℓp(ZN ). For that, we will need to relate the norm of this function with the
norm of the sequence. This Lemma presents the same ideas of the previous one, we present its
proof for the sake of completeness.

Lemma 1.4.6. Let 1 ≤ p ≤ ∞, φ̂ ∈ L∞(RN )∩Mp(RN ) be such that suppφ̂ ⊆ [−R,R]N . Then
φ ∈ Lp and there exists a constant C such that:

∥
∑

m∈ZN

a(m)φ(· −m)∥Lp ≤ C∥φ̂∥Mp∥a∥ℓp ,

for every sequence {a(m)}m∈ZN in ℓp.

Proof. For R = 1 consider the function ψ ∈ Lp(RN ) such that suppψ̂ ⊆ [−2, 2]N , ψ̂ ∈ C∞, and
ψ̂(ξ) = 1 when ξ ∈ [−1, 1]N . We know that φ is a function of 1-exponential type and φ = ψ ∗φ.
Since ψ ∈ Lp(RN ) and φ is a kernel convolution in Lp(RN ), we have that the convolution also
belongs to Lp(RN ). Now, since φ ∈Mp(RN ), we have that

∥∥∥∥∥∥
∑

m∈ZN

a(m)φ(· −m)

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥
∑

m∈ZN

a(m)ψ(· −m) ∗ φ

∥∥∥∥∥∥
Lp

≤ ∥φ̂∥Mp(RN )

∥∥∥∥∥∥
∑

m∈ZN

a(m)ψ(· −m)

∥∥∥∥∥∥
Lp

.

If p = 1, it is clear that the right hand side of the last inequality is less or equal to ∥a∥ℓ1∥ψ∥L1 .
If p =∞, it is less or equal to ∥a∥ℓ∞

∑
m∈ZN |ψ(x− n)|, and since ψ is in the Schwartz class we

have that it is bounded. By Theorem 1.4.4, we obtain the result for 1 ≤ p ≤ ∞ and R = 1.

If R < 1, repeat the process with ψ 1
R
(x) = ψ(Rx)RN , which gives similar results.

With both lemmas in mind, we tackle now the problem of this section, how to construct a
discrete Fourier multiplier from a continuous one.

Theorem 1.4.7. Let 1 ≤ p ≤ ∞, φ̂ ∈ L∞(RN )∩Mp(RN ) with suppφ̂ ⊆ [−R,R]N . Let K be a
convolution kernel such that ∥K ∗ f∥Lp ≤ ∥f∥Lp for every f ∈ Lp(RN ). We have that

∥Kφ ⋆ a∥ℓp ≤ A∥a∥ℓp ,

for every sequence {a(m)}m∈ZN ∈ ℓp.

Proof. Let the sequence {a(m)}m∈ZN be in ℓp, and define f(x) =
∑

m∈ZN

a(m)φ(x−m). Observe

that the support of f̂ is contained in the support of φ̂, therefore f is of R-exponential type. By
Lemma 1.4.6, we have that f ∈ Lp(RN ). On the one hand

(Kφ ⋆ a)(l) =
∑

m∈ZN

Kφ(l −m)a(m) =
∑

m∈ZN

(K ∗ φ)(l −m)a(m) l ∈ ZN .

48
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On the other hand

(K ∗ f)(x) = (K ∗
∑

m∈ZN

a(m)φ(· −m)) =
∑

m∈ZN

a(m)(K ∗ φ)(x−m) x ∈ RN .

Then (Kφ ⋆ a)(l) = (K ∗ f)(l) if l ∈ ZN and:

∥Kφ ⋆ a∥ℓp = ∥(K ∗ f)d∥ℓp ≤ C∥K ∗ f∥Lp ≤ C∥f∥Lp ≤ A∥a∥ℓp .

Where the first inequality is due to Lemma 1.4.5 and the last one due to Lemma 1.4.6.

1.5 Extension of multipliers in TN to RN

Carrying on with the relationship between continuous and discrete multipliers, in this section
we will prove a theorem that we can think of as the reciprocal to the previous one. However,
the hypotheses are a bit different. We must demand some different conditions in order to obtain
the boundedness of the continuous convolution operator from the discrete one.

Theorem 1.5.1. Let 1 ≤ p <∞. Suppose that φ̂ satisfies the following conditions:

(i) suppφ̂ ⊆ [−R,R]N , where R < 1.

(ii) There exists ε > 0 y h ∈ C∞((−ε, ε)N ), h ≡ 1 in [−ε/2, ε/2]N , such that h/φ̂ ∈Mp(RN ).

Consider the dilated kernel Kt(x) = t−NK(t−1x), where t > 0 and K is a convolution kernel.
Then, inequality

∥Kφ
t ⋆ a∥ℓp ≤ ∥a∥ℓp ,

for every t > 0 and {a(m)}m∈ZN ∈ ℓp, implies that

∥K ∗ f∥Lp ≤ A∥f∥Lp ,

where f ∈ Lp(RN ) and A ≤Mp(h/φ̂).

Proof. Suppose that f ∈ S(RN ) satisfies suppf̂ ⊆ [−δ, δ]N where δ < ε/2 and δ < 1 − R. By
density of the Schwartz class in Lp(RN ), and by the dilatation property for RN we can assume
that suppf̂ ⊆ [−δ, δ]N . So, if f ∈ Lp(RN ) and g(x) = rNf(rx) for r > 0, then

|(Kt ∗ g)(x)| = rN |(Kt ∗ f)(rx)|.

Observe that f̂ = f̂h = (f̂h/φ̂)φ̂; then for x = n+ u, n ∈ ZN , u ∈ [0, 1)N we get that

f̂(ξ)e2πixξ = ((f̂h/φ̂)(ξ)e2πiuξ)φ̂(ξ)e2πinξ

=

(∑

k∈ZN

(
f̂h

φ̂
e2πiu·

)
(ξ + k)

)
φ̂(ξ)e2πinξ.

Where the last equality is obtained for our choice of δ and its relationship with R (the terms
vanish when k ̸= 0). Moreover, the previous series defines a function Pu(ξ) whose Fourier
coefficients are

au(m) =

∫

RN

(f̂h/φ̂)(ξ)e2πiuξe2πimξdξ.
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From where we obtain

(Ctf)(x) = (Dφ
t a

u)(n), where x = n+ u.

This is,

(Kt ∗ f)(x) = (Kφ
t ⋆ a

u)(n), where x = n+ u.

Hence

∥Kt ∗ f∥pLp =

∫

[0,1)N

∑

n∈ZN

|(Kφ
t ⋆ a

u)(n)|pdu ≤
∫

[0,1)N
∥au∥plpdu

=

∫

[0,1)N

∑

m∈ZN

∣∣∣∣
∫

RN

(f̂h/φ̂)(ξ)e2πiuξe2πimξdξ

∣∣∣∣
p

du

=

∫

RN

∣∣∣∣
∫

RN

f̂(ξ)(h/φ̂)(ξ)e2πixξdξ

∣∣∣∣
p

dx ≤Mp(h/φ̂)
p∥f∥pLp .

1.6 Application: boundedness of the discrete Hilbert transform

As a consequence of the last result, let us see that the discrete Hilbert transform is a bounded
operator in ℓp(Z).

Consider the kernel associated to the Hilbert transform K = PV ( 1
πx), its Fourier multiplier

is m(ξ) = −i sign(ξ). Let φ be an even function with suppφ̂ ⊆ [−R,R], φ̂ ∈ C∞(R), and
φ̂(0) = 1. Then

Kφ
t (m) = (Kt ∗ φ)(m) =

∫

R
−i sign(ξ)φ̂(ξ)e2πimξdξ = 2

∫ +∞

0
φ̂(ξ) sin(2πmξ)dξ.

Applying integration by parts, we get that

Kφ
t (m) =

1

πm
+O

(
1

m2

)
.

From where we deduce that

(Kφ
t ⋆ a)(n) = Hda(n) + Ca(n),

where Hd is the discrete Hilbert transform, defined as follows

Hda(n) =
∑

m̸=n

a(m)

π(n−m)
.

So, if the Hilbert transform is bounded in Lp(R) for 1 < p <∞, then, by the previous theorem,
we deduce that the discrete operator associated to the Hilbert transform is bounded in ℓp(Z)
for 1 < p <∞.
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1.1 Introduction

Electromagnetic and acoustic waves, while fundamentally different in their physical nature, share
deep mathematical similarities under specific assumptions. Both are governed by hyperbolic par-
tial differential equations that describe wave propagation through space and time. This analogy
not only facilitates the transfer of intuition between fields but also enables shared numerical
techniques for simulation.

Electromagnetic theory is classically described by Maxwell’s equations, a set of coupled first-
order differential equations introduced in the 19th century and now foundational to modern
physics and engineering. These equations, discussed in detail in [1] and [3], provide a complete
description of how electric and magnetic fields evolve and interact with matter. Their wave-
like behavior in the absence of sources was a key step in identifying light as an electromagnetic
phenomenon. The mathematical structure behind these laws is also explored from a theoretical
physics and mathematical perspective in [2].

The parallel with acoustics becomes especially apparent in linear, isotropic, non-dispersive
media, where both fields satisfy similar wave equations. The analogy has been explored in works
such as [7] and further extended to elastic wave modeling as discussed in [6] and [4]. These
analogies become particularly fruitful when developing numerical algorithms, as techniques like
the Finite-Difference Time-Domain (FDTD) method, originally developed for electromagnetics
by [5], can be adapted with minor modifications to simulate acoustic phenomena.

This work presents a pedagogical and numerical study of this analogy. We begin with a theo-
retical introduction to electromagnetic waves via Maxwell’s equations, emphasizing the derivation
of the wave equation and key concepts like transversality and the dispersion relation. Follow-
ing this, we construct a numerical framework based on the FDTD method. We derive stability
conditions, analyze numerical dispersion and phase velocity, and implement absorbing boundary
conditions. Emphasis is placed on the one-dimensional case to explore essential concepts, then
extended to two dimensions via Yee’s scheme.

All simulations were developed using a custom Python package [8], which serves both as a
learning tool and a computational platform. The ultimate goal is to illuminate how analogous
mathematical structures enable cross-domain simulations and to encourage broader use of shared
numerical methods in physics and engineering contexts.

52



XII Congreso del Máster en Investigación Matemática

1.2 Electromagnetic waves

1.2.1 Maxwell’s equations

Maxwell’s equations form the cornerstone of classical electromagnetism, encompassing the rela-
tionships between electric fields E , magnetic fields H , electric currents J , and charge densities
ρ. It is often also introduced a hypothetical magnetic current M useful for developing numerical
methods. These equations describe how these quantities interact within space-time (R4) and are
pivotal for understanding electromagnetic waves.

Maxwell’s equations relating E and H in linear, isotropic, nondispersive, lossy materials are:

∇ ·E =
ρ

ϵ
(1.1)

∇ ·H = 0 (1.2)

∇×E = −µ∂H
∂t
−M (1.3)

∇×H = ϵ
∂E
∂t

+ J (1.4)

where the currents can be decomposed into an independent source (J source, M source) and a loss
due to the material conductivity (σ, σ∗)

J = J source + σE , M = M source + σ∗H

and the fields can be related to their corresponding flux densities with the proportions

D = ϵE = ϵrϵ0E , B = µH = µrµ0H

in linear, isotropic, nondispersive media. When not in isotropic media, we allow the electrical
permittivity ϵ and magnetic permeability µ to be matrices indicating a different material behavior
depending on the direction1.

The constants ϵ0, µ0 are the respective properties in the void, which take the following values:

ϵ0 ≈ 8.85× 10−12, µ0 = 4π × 10−7.

They are related to the speed of light c in the following way

c =
1√
µ0ϵ0

.

1.3 Numerical methods

The electromagnetic simulations showcased in this and the following sections were performed
using a custom Python library, which is provided as supplementary material [8].

1.3.1 One-dimensional FDTD

The finite-difference time-domain method is used in computational electrodynamics in which
finite differences are used to approximate Maxwell’s differential equation and a discrete grid of
the domain is used to solve for the electromagnetic field forward in time. To understand the
different issues that arise with this problem we will consider the simplest wave equation, the one
dimensional scalar wave equation traveling at the speed of light c

∂2u

∂t2
= c2

∂2u

∂x2
. (1.5)

1This is because, in isotropic materials, there is no preferred direction.
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We define a discrete grid of points (xi, tn) = (i∆x, n∆t) for i = 1, . . . Nxand n = 1, . . . , Nt where
∆, x∆t > 0 define the size of the steps. To approximate the second order derivatives at each
point, we use the second order central approximation

∂2u

∂x2

∣∣∣∣
xi,tn

=
uni+1 − 2uni + uni−1

(∆x)2
,

∂2u

∂t2
|xi,tn =

un−1
i − 2uni + un−1

i

(∆t)2

When introducing this approximations into the wave equation (1.5) we obtain the following
scheme

un−1
i =

(
c∆t

∆x

)2 [
uni+1 − 2uni + uni−1

]
+ 2uni − un−1

i

It is remarkable the case c∆t = ∆x in which the scheme is true for the exact solution at the
sampled values.

When not under these circumstances, however, we can characterize the numerical error by
computing the numerical dispersion relation.

Let us consider a wave solution in the exponential form ej(wx−kx), where we will denote the
imaginary number j :=

√
−1 for simplicity in this section and to avoid confusion with the index

i. Similar to how the dispersion relation for this wave is w2 = c2k2, we can try to obtain the
relationship for the numerical wave that is obtained with the scheme. Let us consider a wave of
this form with angular frequency w, and let us call the numerical wavenumber a possibly complex
value k, the wavenumber of the wave sampled at the discrete grid

uni = ej(wn∆t−ik∆x) = ekimagi∆xej(wn∆t−ikreal∆x) (1.6)

Introducing the numerical wave into the scheme, we obtain the we get the following relation-
ship which we call the numerical dispersion relation

k̃ =
1

∆x
cos−1

{
1 +

(
∆x

c∆t

)2

[cos(ω∆t)− 1]

}
=

1

∆x
cos−1

{
1 +

(
1

S

)2 [
cos

(
2πS

Nλ

)
− 1

]}
=

1

∆x
cos−1(ξ)

where we define the Courant number S = c∆y
∆x and the grid sampling resolution in space cells per

free-space wavelength Nλ0 = λ0
∆x . Using the magic timestep we obtain the dispersion relation,

but in general the value of k differs from k for different resolutions. We can see how the numerical
phase velocity vp = w

kreal
and the amplitude multiplier ekimag∆x behave for different values of

Nλ0 and S = 0.5 in Fig. 1.1 and Fig. 1.2 respectively.

Figure 1.1: Numerical phase velocity for S = 0.7
depending on 1/Nλ.

Figure 1.2: Amplitude multiplier for S = 0.7
depending on 1/Nλ.
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Evaluating different values of S,N can result in k being real or complex. It can be seen that
the values of Nλ such that ξ = −1 gives us a series of thresholds between real and complex
wavenumbers. If S ≤ 1 (a condition for stability seen later) then for a big enough Nλ we have
ξ > −1 such that we always obtain a real wavenumber.

In particular, for the minimum free-space wavelength λ0,min that can be sampled, its phase
velocity is vp,max = 1

S c =
∆x
∆t . Again assuming S ≤ 1, we have that the frequency components

corresponding to this wavenumber might travel faster than c, and the maximum speed will be a
spatial cell ∆x per temporal cell ∆t. In Fig. 1.3 due to a sparsely sampled discontinuity, we can
see some ringing due to retarded propagation (vp < c) and a super-luminal component ahead of
the right discontinuity (vp > c) for the cases S = 0.99, 0.5.

Figure 1.3: Comparison of rectangular pulse propagation using different Courant numbers shown
for the same real time position.

Now we will study how S should be chosen for stability. We can follow a similar complex-
frequency analysis for a numerical wave with numerical angular frequency w = wreal + jwimag
and numerical wavenumber k.

uni = e−wimagn∆tej(wrealn∆t−ik∆x) (1.7)

Then we obtain a similar relation

ω̄ =
1

∆t
cos−1{S2[cos(k̃∆x)− 1] + 1}.

In this equation we see that ξ < −1 gives us a complex value, and that occurs if S > 1. In this
case we see that the amplitude multiplier is

e−wimagn∆t = (−ξ +
√
ξ2 − 1)n

which will grow exponentially in time. In particular the maximum growth is achieved for the
wavelength λ = 2∆x. We can see in Figs 1.4-1.5 that a wave with this wavelength dominates
the simulation after around 200 timesteps.

1.3.2 ABC for one dimension

It is often important to isolate a region of interest where some fenomena are happening without
the interference from reflection at boundaries. To solve this numerous techniques have been
devised like absorbing boundary conditions or the use of added lossy layers. We explore the case
of a first order absorbing boundary condition for the one-dimensional wave.
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Figure 1.4: Evolution of right propagating Gaus-
sian pulse at time t = 2s for S = 1, 1.005 which
corresponds to nt = 199, 200.

Figure 1.5: Evolution of right propagating Gaus-
sian pulse at time t = 2.11s for S = 1, 1.005
which corresponds to nt = 210, 211.

Solutions to the Eq. are of the form u(x, t) = F (x− vt) +G(x+ vt), in one dimension these
are a sum of waves traveling to the right or to the left. Equivalently, the wave equation can be
written as the product of advection equations

∂2u

∂x2
− 1

µϵ

∂2u

∂t2
=

(
∂

∂x
− 1√

µϵ

∂

∂t

)(
∂

∂x
+

1√
µϵ

∂

∂t

)
u = 0.

A wave traveling to the left F (x+ vt) is a solution of

∂u

∂x
− 1√

µϵ

∂u

∂t
.

We can then numerically solve this equation for the left boundary cell un+1
0 , that way there

is no reflection for left traveling waves at speed 1√
µϵ .

A stable scheme can be found expanding this advection equation at (x1/2, t1/2). We use first
order central differences for each partial derivative and approximate the terms at half steps that
appear taking averages:

√
µϵ
∂u

∂t
|1/2,n+1/2 ≈

√
µϵ

un+1
0 +un+1

1
2 − un0+u

n
1

2

∆t
,

∂u

∂x
|1/2,n+1/2 ≈

√
µϵ

un+1
1 +un+1

1
2 − un0+u

n
0

2

∆t

Then we obtain the scheme

un+1
0 = un1 +

Sc√
µrϵr
− 1

Sc√
µrϵr

+ 1

(
un+1
1 − un0

)
.

Similarly, we obtain an analogous scheme for the right boundary cell

un+1
N = unN−1 +

Sc√
µrϵr
− 1

Sc√
µrϵr

+ 1

(
un+1
N−1 − unN

)
.

A wave can be traveling at a different speed due to numerical dispersion and fail to be
absorbed, if this error is noteworthy higher order ABC conditions may be used. A simple second
order ABC boundary condition can be found by applying the corresponding advection equation
operator two times. In general, a second order ABC con be constructed in three dimensions [9]
for the FDTD method. We see an example in Fig. 1.6 of using a first and second order ABC
condition on a Gaussian pulse where a small reflection can be mitigated in the second case.
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Figure 1.6: Evolution of the electromagnetic wave under two different boundary conditions. The
first row corresponds to a first order ABC while the second one to a second order ABC, using a
courant number S = 0.5 to produce a small numerical velocity error.

1.3.3 Yee’s algorithm

We have given a simple scheme for solving the one-dimensional wave equation, to consider
Maxwell’s curl equations in three dimensions using FDTD, Yee’s algorithm [5] was proposed.
This algorithm consisted in developing a scheme for solving the curls equations (1.3), (1.4) using
a staggered grid that automatically checks the divergence equations (1.1), (1.2).

Let us consider an equidistant but staggered in space and time grid as shown in Fig 1.7.
We write the indices (i, j, k) := (i∆x, j∆y, k∆z) (∆ := ∆x = ∆y = ∆z when all space steps
coincide) and n := n∆t so that uni,j,k = u(i∆x, j∆y, k∆z, n∆t).

Figure 1.7: Yee’s algorithm individual discretization cell.

The scheme for all field components is obtained analogously by using central differences and
a semi-implicit approximation to fit time-steps into the correct grid.

We will consider the 2-dimensional TE2 mode in which the fields are constant in the y
direction and (H2, E1, E3) form an independent set of equations. Let us obtain Yee’s algorithm
for this case, Maxwell’s curl equations are:

∂H2

∂t
=

1

µ

(
∂E3

∂x
− ∂E1

∂z
− (My + σmH2)

)

∂E1

∂t
=

1

ϵ

(
−∂H2

∂z
− (Jsource1 + σE1)

)

∂E3

∂t
=

1

ϵ

(
∂H2

∂x
− (Jsource3 + σE3)

)
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Then simplifying Yee’s algorithm in three dimensions:

H2|n+1
i,k+1 = Da|i,k+1H2|ni,k+1

+Db|i,k+1 ·
(
E3|n+1/2

i+1/2,k+1 − E3|n+1/2
i−1/2,k+1 + E1|n+1/2

i,k+1/2 − E1|n+1/2
i,k+3/2 −M2|n+1/2

i−j+1/2,k+1∆
)

E1|n+1/2
i,k+1/2 = Ca|i,k+1/2E1|n−1/2

i,k+1/2

+ Cb|i,k+1/2 ·
(
H2|ni,k −H2|ni,k+1 − Jsource1 |ni,k+1/2∆

)

E3|n+1/2
i−1/2,k+1 = Ca|i−1/2,k+1Ez|n−1/2

i−1/2,k+1

+ Cb|i−1/2,k+1 ·
(
H2|ni,k+1 −H2|ni−1,k+1 − Jsource3 |ni−1/2,k+1∆

)

where we define the medium coefficients

Ca|i,j,k =
(
1− σi,j,k∆t

2ϵi,j,k

)
/

(
1 +

σi,j,k∆t

2ϵi,j,k

)

Cb|i,j,k =
(

∆t

ϵi,j,k∆

)
/

(
1 +

σi,j,k∆t

2ϵi,j,k

)

Da|i,j,k =
(
1−

σ∗i,j,k∆t

2µi,j,k

)
/

(
1 +

σ∗i,j,k∆t

2µi,j,k

)

Db|i,j,k =
(

∆t

µi,j,k∆

)
/

(
1 +

σ∗i,j,k∆t

2µi,j,k

)
.

A suitable grid for this case is shown in ??. This scheme is then enough to make simple simu-
lations efficiently, as an example we simulate the TE2 mode affected by a Sinusoidal source in
Fig. 1.8.

Figure 1.8: Two-dimensional simulation of TE2 mode with a sinusoidal source at the center of
the grid.

1.4 Conclusions

This work has explored the deep mathematical analogy between electromagnetic and acoustic
wave phenomena, highlighting how similar underlying structures allow for shared analytical in-
sights and numerical methods. Beginning with Maxwell’s equations, we derived the correspond-
ing wave equations and examined their numerical solution using the Finite-Difference Time-
Domain (FDTD) method. A detailed analysis of numerical dispersion and stability conditions
revealed the influence of discretization parameters on the propagation characteristics and the
emergence of spurious modes.

We implemented absorbing boundary conditions (ABC) to mitigate reflections in finite do-
mains and compared first- and second-order schemes. Extending these ideas, we introduced Yee’s
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algorithm as a generalization of FDTD in higher dimensions, culminating in a simulation of the
TE2 mode using a custom Python package.

By focusing on a pedagogical development of the theory and its numerical implementa-
tion, this work emphasizes how analogies between physical systems can inspire efficient cross-
disciplinary modeling strategies. Such insights are valuable not only in theoretical investigations
but also in practical applications across physics and engineering.
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1.1 introducción

En las últimas décadas, la organización de la información en la web se ha convertido en un
desaf́ıo esencial en la ciencia de datos, debido al crecimiento acelerado del volumen de contenido
digital y a la necesidad de acceder a información pertinente de forma rápida y precisa. En este
contexto, el algoritmo PageRank ha sido una de las herramientas más influyentes en el campo
de la recuperación de información, al establecer un criterio cuantitativo de relevancia basado en
la estructura de enlaces entre páginas web. Su formulación original, fundamentada en cadenas
de Markov y navegación aleatoria, permitió transformar la web en un grafo dirigido donde cada
nodo representa una página y cada enlace actúa como una votación impĺıcita de importancia.
Sin embargo, el modelo clásico presenta limitaciones cuando se aplica a redes dinámicas, como
las redes sociales o los sistemas de publicación cient́ıfica, donde los enlaces evolucionan con el
tiempo y la actualidad del contenido influye directamente en su relevancia. En tales entornos,
un modelo estático tiende a privilegiar páginas históricamente consolidadas, lo que reduce su
capacidad para captar información emergente o contenidos recientemente generados pero de alto
impacto.
Ante esta problemática, el presente trabajo propone una extensión del algoritmo PageRank me-
diante la incorporación expĺıcita de un factor temporal en la matriz de transición. En particular,
se introduce un coeficiente de ponderación basado en un decaimiento exponencial en función del
tiempo de creación del enlace:

Tij(t) = e−λ(tactual−tij),

donde tij representa la fecha en que se estableció el enlace entre las páginas i y j, y λ es un
parámetro de sensibilidad temporal. Esta modificación busca reforzar la visibilidad de con-
tenidos recientes sin ignorar la estructura global del grafo, mejorando la detección de nodos
emergentes en entornos donde la actualidad es un atributo relevante. Además de presentar esta
mejora metodológica, se analizan de forma cŕıtica los efectos positivos y negativos del algoritmo
PageRank. Por un lado, se estudian sus beneficios en términos de eficiencia en la búsqueda,
incentivo a la producción de contenido de calidad y democratización del acceso al conocimiento.
Por otro, se discuten sus efectos colaterales, como la formación de burbujas informativas, la
monopolización del posicionamiento digital y la propagación de desinformación. Finalmente, se
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exploran alternativas h́ıbridas como SALSA y estrategias basadas en aprendizaje automático,
con el fin de mitigar las limitaciones observadas y avanzar hacia sistemas de clasificación más
justos, adaptativos y robustos.

1.2 Fundamentos teóricos del algoritmo PageRank

El algoritmo PageRank se fundamenta en la teoŕıa de grafos, ya que modela la Web como
un grafo dirigido donde las páginas web son nodos y los hiperv́ınculos entre ellas son aristas
dirigidas. Esta sección introduce los conceptos fundamentales que permiten comprender la
lógica estructural del algoritmo, tales como los grafos, los tipos de grafos, matrices asociadas,
caminos, ciclos y componentes conexos.

1.2.1 Conceptos básicos de grafos

Un grafo dirigido (o d́ıgrafo) se define como un par G = (V,E), donde V es un conjunto finito
de vértices (nodos) y E es un conjunto de aristas dirigidas, es decir, pares ordenados (vi, vj) que
representan una conexión dirigida desde el nodo vi al nodo vj .
En el contexto de la Web, cada página se modela como un nodo vi ∈ V , y un enlace de una
página i hacia una página j se modela como una arista (vi, vj) ∈ E.
El grado de salida (outdegree) de un nodo vi es el número de aristas que salen de él. El grado
de entrada (indegree) es el número de aristas que apuntan hacia él.

1.2.2 Matriz de adyacencia y matriz de transición

La estructura de enlace entre las páginas se representa formalmente mediante una matriz de
adyacencia A = [aij ], donde:

aij =

{
1 si hay un enlace de la página i a la página j

0 en otro caso

A partir de esta matriz, se construye la matriz de transición H = [hij ], donde cada elemento
representa la probabilidad de transición de un ”navegante aleatorio” de una página a otra:

hij =

{
1
di

si aij = 1 y di > 0

0 en otro caso

donde di es el número de enlaces salientes de la página i (su grado de salida).

1.2.3 Conectividad y componentes conexos

Un concepto importante en el análisis de grafos es el de conectividad. Un grafo es fuertemente
conexo si existe un camino dirigido desde cualquier nodo a cualquier otro nodo. En la Web real,
esto no siempre se cumple, por lo que es necesario considerar la existencia de nodos colgantes
y componentes de sumidero, lo que más adelante se aborda en la construcción de la matriz de
Google.

1.2.4 Ejemplo ilustrativo

Considérese un pequeño grafo dirigido con tres páginas A, B y C, y los siguientes enlaces: -
A→ B, A→ C, B → C, C no enlaza a ninguna página.
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Esto genera una matriz de adyacencia:

A =



0 1 1
0 0 1
0 0 0




y una matriz de transición H:

H =



0 1

2
1
2

0 0 1
0 0 0




Obsérvese que la fila correspondiente al nodo C es cero: es un nodo colgante, lo que rompe la
propiedad de estocasticidad (las filas deben sumar 1). Para solucionar este problema, se redefine
la matriz reemplazando las filas vaćıas con una distribución uniforme, lo que será tratado en la
siguiente sección.

1.3 Modelo de PageRank

El modelo de PageRank se basa en una analoǵıa con el comportamiento de un navegante aleatorio
que recorre la Web a través de los hiperenlaces. Este comportamiento se modela mediante una
caminata aleatoria sobre un grafo dirigido que representa la estructura de Internet.

1.3.1 Modelo de caminata aleatoria

Supongamos que un usuario comienza en una página web aleatoria y, en cada paso, hace clic en
uno de los enlaces salientes de la página actual, elegidos con igual probabilidad. Este proceso
se puede modelar como una cadena de Markov homogénea sobre el grafo de la Web, donde el
estado del sistema es la página en la que se encuentra el usuario en un momento dado.
Formalmente, sea n el número total de páginas, y definamos una matriz de transición H = [hij ]
tal que:

hij =

{
1
di

si existe un enlace de la página i a la página j

0 en otro caso

donde di es el número de enlaces salientes de la página i.

1.3.2 Definición del vector PageRank

Sea π = (π1, π2, . . . , πn) un vector de distribución de probabilidad sobre las páginas web. La
ecuación fundamental de PageRank es:

π = πH

es decir, π es el vector propio izquierdo de la matriz H asociado al valor propio 1. Este vector
representa la distribución estacionaria de la cadena de Markov, es decir, la probabilidad a largo
plazo de que el navegante se encuentre en cada página.

1.3.3 Problemas prácticos del modelo simple

El modelo descrito anteriormente enfrenta dos problemas fundamentales cuando se aplica a la
Web real:

• Nodos colgantes (Dangling nodes): Son páginas sin enlaces salientes, es decir, nodos
con di = 0. En ese caso, la fila i de H es un vector nulo, lo cual impide que H sea
estocástica.
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• Componentes de sumidero (Sink components): Son subconjuntos del grafo donde
todos los enlaces apuntan dentro del propio componente, y no hay enlaces salientes ha-
cia el resto del grafo. Esto provoca que una caminata aleatoria pueda quedar atrapada
permanentemente en dichos componentes.

1.3.4 Solución: matriz de Google

Para resolver estos problemas, se define la matriz de Google G como una combinación convexa
entre la matriz H corregida (denotada S) y una matriz de ”teletransporte” E:

G = αS + (1− α)E

donde:

• S es la matriz de transición con filas correspondientes a nodos colgantes reemplazadas por
el vector uniforme u = 1

n(1, 1, . . . , 1).

• E es una matriz donde todas las filas son iguales a u, es decir, E = ueT .

• α ∈ (0, 1) es el factor de amortiguamiento o damping factor, usualmente α = 0.85.

1.3.5 Interpretación probabiĺıstica

La interpretación de esta fórmula es que, con probabilidad α, el usuario sigue un enlace de
la página actual (modelo estructural), y con probabilidad 1 − α elige aleatoriamente cualquier
otra página (teletransporte). Esto garantiza que el sistema sea irreducible y aperiódico, lo que
asegura la existencia y unicidad de una distribución estacionaria π.

1.3.6 Cálculo iterativo del PageRank

Dado que el número de páginas web es enorme, el vector π se calcula mediante un algoritmo
iterativo conocido como el método de potencias:

π(k+1) = π(k)G

Se parte de un vector inicial (por ejemplo, π(0) = 1
n(1, 1, . . . , 1)), y se itera hasta que se cumpla

un criterio de convergencia:

∥π(k+1) − π(k)∥ < ε

1.3.7 Ejemplo numérico simple

Dado el grafo dirigido con los nodos a, b, c y las siguientes aristas:

a

b c 

Figure 1.1: ejemplo 
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XII Congreso del Máster en Investigación Matemática

Paso 1: Construcción de la matriz de adyacencia
La matriz de adyacencia A para el grafo dado es:

A =



1 1 0
1 0 1
0 0 0




Paso 2: Cálculo de la probabilidad uniforme y obtención de la nueva matriz S
Calculamos el vector de probabilidad uniforme u. Dado que n = 3 (el número de nodos en el
grafo), entonces:

u =
1

n



1
1
1


 =

1

3



1
1
1


 =




1
3
1
3
1
3




Reemplazando la fila correspondiente al nodo colgante, obtenemos la matriz S:

S =



1 1 0
1 0 1
1
3

1
3

1
3




Paso 3: Obtención de la nueva matriz G
Tomemos el factor de amortiguamiento a = 0.85, entonces 1− a = 0.15. La matriz de teletrans-
porte E, dado que n = 3, es:

E =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3




Según la fórmula G = aS + (1− a)E, calculamos la matriz Google G:

G = 0.85S + 0.15E

=



0.9 0.9 0.05
0.9 0.05 0.9
1
3

1
3

1
3




Paso 4: Iteración del cálculo del PageRank

Supongamos que el vector inicial de valores de PageRank π0 =




1
3
1
3
1
3


. En la primera iteración,

calculamos π1 como sigue:

π1 = π0G =
[
1
3

1
3

1
3

]


0.9 0.9 0.05
0.9 0.05 0.9
1
3

1
3

1
3




Se deben continuar con múltiples iteraciones hasta que el vector de valores de PageRank converja
(es decir, la diferencia entre los resultados de dos iteraciones consecutivas sea muy pequeña).

1.4 Impacto Socioeconómico y Cŕıtico del Algoritmo PageRank

1.4.1 Influencia en el Comercio Electrónico y la Dinámica de Mercado

Correlación directa entre tráfico y tasa de conversión

Los datos emṕıricos muestran que un PageRank alto incrementa significativamente la visibilidad
de las páginas de productos. Por ejemplo:

65
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• Productos en el top 10: 5,000–10,000 visitas/mes, tasa de conversión del 10

• Productos en posiciones 51–100: 500–1,000 visitas/mes, tasa de conversión 5

Table 1.1: Volumen de visitas y tasa de conversión según ranking

Ranking Visitas/mes Tasa de conversión

1–10 5,000–10,000 10%–20%

11–50 1,000–3,000 5%–10%

51–100 500–1,000 2%–5%

Desigualdad de recursos y competencia desleal

Las grandes empresas dominan los primeros lugares en los motores de búsqueda mediante el uso
intensivo de técnicas de SEO, marginando a pequeños comerciantes. Esta dinámica consolida
monopolios digitales y restringe la diversidad de opciones disponibles para los consumidores.

1.4.2 Difusión de Información y Formación de Tendencias Sociales

Aceleración de la propagación de contenido

El PageRank también desempeña un rol clave en la velocidad de difusión de noticias e infor-
mación en redes sociales. Contenido con PageRank alto (por ejemplo, top 10) puede alcanzar
hasta 500 compartidos/hora, comparado con solo 50 en rankings bajos (ver Tabla 1.2).

Table 1.2: Velocidad de difusión según PageRank

PageRank Compartidos/hora

Alto (1–10) 500

Medio (4–7) 200

Bajo (1–3) 50

Configuración de tendencias y efecto burbuja

PageRank amplifica narrativas dominantes al priorizar el contenido más enlazado. Estudios
demuestran que el 90

1.4.3 Ventajas Técnicas y Sociales del Algoritmo PageRank

Eficiencia en la búsqueda de información

PageRank introdujo un modelo robusto y eficiente para ordenar páginas web combinando cade-
nas de Markov con un modelo de navegación aleatoria. La fórmula generalizada es:

P = (1− d)E + dMTP, (1.1)

donde:

• P es el vector de importancia de las páginas.

• d es el factor de amortiguación.
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• M es la matriz de transición.

• T pondera la antigüedad de los enlaces.

Un refinamiento incluye un factor temporal dinámico:

Impulso a la creación de contenido de calidad

El algoritmo recompensa contenidos con enlaces entrantes relevantes y confiables. Esto ha in-
centivado la producción de contenidos bien referenciados, especialmente en entornos académicos,
donde también se utilizan variantes como el Weighted PageRank, que incorpora la autoridad de
la fuente y la interacción de los usuarios.

Democratización del acceso al conocimiento

En contextos educativos, PageRank y sus derivados como SALSA han facilitado la redistribución
del acceso a información en regiones menos desarrolladas, permitiendo que recursos locales
tengan visibilidad en redes más amplias.

1.4.4 Impactos Negativos y Alternativas Algoŕıtmicas

Formación de burbujas informativas

La estructura del algoritmo tiende a reforzar comunidades ideológicas cerradas. Esto puede
medirse con la modularidad Q:
SALSA y otros algoritmos de redistribución buscan aumentar la diversidad intercomunitaria
penalizando nodos sobreconectados en clústeres cerrados.

Desigualdad de acceso y competencia desleal

El diseño original favorece a grandes actores con recursos para optimizar su SEO. Esto limita
la entrada de nuevos competidores. Aunque existen intentos de incluir pesos personalizados, el
sesgo estructural persiste.

Propagación de información falsa

PageRank no evalúa la veracidad de los contenidos, lo que ha permitido la difusión de noticias
falsas. Algunas soluciones incluyen el uso de redes neuronales para detectar patrones semánticos
no confiables. No obstante, estas técnicas enfrentan retos éticos y técnicos.

1.4.5 Propuestas de mejora y futuras ĺıneas de investigación

• Modelos h́ıbridos: Algoritmos como SALSA o variantes con retroalimentación comuni-
taria aumentan la diversidad informativa.

• Ponderación temporal: Ajustar los pesos de los enlaces en función de su antigüedad
para reducir el sesgo hacia nodos históricos.

• Integración de confiabilidad: Incorporar medidas de credibilidad y verificación al-
goŕıtmica antes de la propagación.
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XII Congreso del Máster en Investigación Matemática

1.5 Conclusion

El algoritmo PageRank de Google ha tenido un impacto profundo en la era de la información,
mejorando la eficiencia en la recuperación de datos y fomentando el desarrollo del comercio
electrónico. Sin embargo, también ha generado una serie de problemas relacionados con la
equidad en el acceso a la información, la concentración de poder informativo y la ética en la
difusión de noticias. A medida que la tecnoloǵıa avanza, es fundamental continuar investigando
y perfeccionando el algoritmo para lograr un equilibrio entre precisión, diversidad y equidad
en la información. Además, se deben considerar los aspectos éticos en el desarrollo de estos
sistemas para garantizar un entorno de información saludable y justo.

References

[1] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,
Computer Networks and ISDN Systems, 30(1–7): 107–117, 1998.

[2] T. H. Haveliwala, Topic-sensitive PageRank, Proceedings of the 11th International Con-
ference on World Wide Web, pp. 517–526, 2002.

[3] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of the
ACM, 46(5): 604–632, 1999.

[4] E. Pariser, The Filter Bubble: What the Internet is Hiding from You, Penguin UK, 2011.

[5] H. Allcott and M. Gentzkow, Social media and fake news in the 2016 election, Journal
of Economic Perspectives, 31(2): 211–236, 2017.

68



Iterates of composition operators on global spaces 
of ultradifferentiable functions
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1.1 Introduction

This a continuation of the talk given in the XI Congreso del Máster en Investigación Matemática
y Doctorado en Matemáticas, entitled Composition operators on Gelfand-Shilov classes. For the
sake of self-containment, we are going to repeat some parts of the previous talk.

Given a function ψ : KN → KN and a suitable family of functions X defined on KN , the
composition operator associated with ψ on X is Cψf = f ◦ψ, for every f ∈ X. Given a topologi-
cal vector space X, a relevant and not always obvious problem is to find necessary and sufficient
conditions on ψ for Cψ(X) ⊂ X and Cψ : X → X to hold some property such as continuity,
power boundedness or mean ergodicity.

The composition operators and their properties have been studied in several function spaces
such as in the space of holomorphic functions, of real analytic functions (see for instance
[11, 20, 21] and the references therein), of smooth functions (see for instance, [19] and the
references therein) and also in the Schwartz class (see for instance [13, 14, 15]). There are many
classical problems related to this operator (see for instance [9] and the references therein).

It is well-known the following classical result:

Theorem 1.1.1 (Borel’s theorem) Any formal series
∑∞

j=0 cjx
j is the Taylor series of a

smooth function defined in an open neighborhood of the origin. In other words, the Borel map
B : C∞(R)→ RN defined by B(f) = (f (j)(0))j is surjective.

From this, we see at once that the space of smooth functions is much “bigger” than the space
of real analytic functions. It would be interesting to find intermediate families of functions to
parametrize the gap existing between both. Are there spaces between one and the other that
have “nice” properties and for which the composition operator is worth studying? It turns out
that there is a family of classes that gives an affirmative answer to the previous question:

1e-mail: carmen.fdez-rosell@uv.es
2e-mail: antonio.galbis@uv.es
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Definition 1.1.1 The Gevrey class (of index s ≥ 1) Gs(R) is defined as the set of smooth
functions f such that for every compact subset K there exists a C = CK,f > 0 satisfying that

sup
x∈K
|f (j)(x)| ≤ Cj+1 (j!)s

for all j ∈ N0.

On the one hand, if f is a real analytic function it is easy to see using Cauchy’s integral formula
that for every compact subset K there exists a C = CK,f > 0 satisfying that

sup
x∈K
|f (j)(x)| ≤ Cj+1 j!

for all j ∈ N0. So f ∈ G1(R). On the other hand, if f ∈ G1(R) then, it holds by Cauchy–Hadamard
theorem that f is real analytic. So G1(R) = A(R). It is trivial that Gs(R) ⊂ Gs+h(R) ⊂ C∞(R),
for all s ≥ 1, h > 0. However, the following inclusions ae strict:

⋃
s≥1G

s(R) ⫋ C∞(R) (this
is an easy consequence of Borel’s theorem) and A(R) ⫋ ⋂s>1G

s(R) (this result is not easy to
obtain, see, for instance, [7]).

These classes appeared for the first time in the work of Gevrey, who measured the growth
behaviour of such functions in terms of a weight sequence (Mp)p, which is ((p!)s)p, s ≥ 1, in the
Gevrey case and which satisfies certain technical conditions in the general case of (Mp)−ultra-
differentiable classes. Later Beurling [5] pointed out that one can also use weight functions ω
to measure the smoothness of functions with compact support by the decay properties of their
Fourier transform. This method was modified by Braun, Meise, and Taylor in [10], who showed
that also these classes can be defined by the decay behaviour of their derivatives, if one uses the
Young conjugate of the function t→ ω(et). Meise and Taylor in [10] showed that under rather
strong conditions both ways lead to the same class. But in general there are classes defined in
one way which cannot be defined in the other way. For more details on the exact relationship
between both approaches see [8]. The composition operator on the case of ω−ultradifferentiable
functions has been studied in [12].

Recall that the Schwartz class S(R) consists of those smooth functions f : R→ R with the
property that

pn(f) := sup
x∈R

sup
1≤j≤n

(1 + x2)n|f (j)(x)| <∞

for each n ∈ R. It turns out that S(R) is a Fréchet space when it is endowed with the topology
generated by the sequence of seminorms (pn)n∈N.

The Gevrey classes are made of functions whose derivatives verify certain local estimations,
whereas the Schwartz class is made of functions whose derivatives asymptotically decrease fast
“enough”. Combining both the Gevrey classes and the Schwartz class, we define the following
well-known family of smooth functions (originally introduced in [16], see [18] and the references
therein for further information):

Definition 1.1.2 The Gelfand-Shilov space Σd(R), with d > 1, consists of those functions
f ∈ C∞(R) such that, for each h > 0 :

sup
x∈R

sup
j,ℓ∈N0

|xℓf (j)(x)|
hj+ℓ[(j + ℓ)!]d

< +∞.

We can define more general families of ultra-differentiable functions by changing the sequence
([(j + ℓ)!]d)j,ℓ above for a suitable sequence (Mj+ℓ)j,ℓ, called weight sequence.
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Definition 1.1.3 The space S(Mp)(R) associated to the weight sequence (Mp)p∈N0 consists of
those functions f ∈ C∞(R) such that, for each h > 0 :

sup
x∈R

sup
j,ℓ∈N0

|xℓf (j)(x)|
hj+ℓMj+ℓ

< +∞.

As we have hinted above, we can define the following global class of smooth functions using
weight functions instead of weight sequences in the following way:

Definition 1.1.4 A continuous increasing function ω : [0,∞[−→ [0,∞[ is called a weight if it
satisfies:

(α) there exists K ≥ 1 with ω(2t) ≤ K(ω(t) + 1) for all t ≥ 0,

(β)

∫ ∞

0

ω(t)

1 + t2
dt <∞,

(γ) log(1 + t2) = o(ω(t)) as t tends to ∞,

(δ) φω : t→ ω(et) is convex.

The function ω is extended to R as ω(x) = ω(|x|). The Young conjugate φ∗
ω : [0,∞[−→ R of

φω is defined by
φ∗
ω(s) := sup{st− φω(t) : t ≥ 0}, s ≥ 0.

Then φ∗
ω is convex, φ∗

ω(s)/s is increasing and lim
s→∞

φ∗
ω(s)

s
= +∞.Moreover, for every A > 0, λ >

0 there is C > 0 such that
Ajj! ≤ Ceλφ∗

ω(
j
λ
)

for each j ∈ N0. The weight function ω is said to be a strong weight if

(ε) there exists a constant C ≥ 1 such that for all y > 0 the following inequality holds

∫ ∞

1

ω(yt)

t2
dt ≤ Cω(y) + C. (1.1)

Definition 1.1.5 Let ω be a weight function. The Gelfand-Shilov space of Beurling type S(ω)(R)
consists of those functions f ∈ L1(R) with the property that f, f̂ ∈ C∞(R) and

qλ,j(f) := max
(
sup
x∈R
|f (j)(x)|eλω(x), sup

ξ∈R
|f̂ (j)(ξ)|eλω(ξ)

)
< +∞

for every λ > 0, j ∈ N0.

S(ω)(R) is a Fréchet space with different equivalent systems of seminorms. In particular we shall
use the families of seminorms (see for instance [2, 6])

pλ(f) := sup
j,k∈N0

sup
x∈R
|xkf (j)(x)|e−λφ∗

ω(
j+k
λ

), λ > 0

or
πλ,µ(f) := sup

j∈N0

sup
x∈R
|f (j)(x)|e−λφ∗

ω(
j
λ
)+µω(x), λ > 0, µ > 0.

Let d > 1 be given. The Gelfand-Shilov space Σd(R) is

Σd(R) = S(Mp)(R) = S(ω)(R),
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where

Mp = p!d, ω(t) = t
1
d .

The two approaches described are nonequivalent, it is strictly more general the one that uses
weight functions. This is one of the reasons we favor working with weight functions ω instead
of weight sequences (Mp)p. In [3] we started the investigation of composition operators on the
Gelfand-Shilov space of Beurling type S(ω)(R). We proved in particular the following result:

Theorem 1.1.2 Let ψ be a polynomial of degree N > 1. Then for every d ≤ d′ < 2N−1
N d there

is f ∈ Σd(R) such that f ◦ ψ /∈ Σd′(R). In particular, for any polynomial ψ of degree greater
than one and d ≤ d′ < 3

2d there is f ∈ Σd(R) such that f ◦ ψ /∈ Σd′(R).

Observe that 3
2 ≤ 2N−1

N < 2. for all N ∈ N. In particular, we have the following result:

Corollary 1.1.3 Let ψ be a polynomial of degree N > 1 and d > 1. Then, Cψ(Σd(R)) ̸⊂ Σd(R).

So we cannot iterate the composition operator associated with a polynomial of degree greater
than one in the usual sense. However, we have the following positive result:

Theorem 1.1.4 Let ω be a subadditive weight, σ(t) = ω(t
1
2 ) and ψ a non constant polynomial.

Then f ◦ ψ ∈ S(σ)(R) for every f ∈ S(ω)(R). In particular, if d > 1 and ψ is a non constant
polynomial then Cψ : Σd(R)→ Σ2d(R) is continuous.

Noticing that C2
ψ = Cψ◦ψ and that ψ ◦ ψ is also a polynomial, we can still iterate the composi-

tion operator associated with polynomials and study its dynamics. More explicitly, if we denote

ψm =

m times︷ ︸︸ ︷
ψ ◦ ... ◦ ψ, for all m ∈ N then we have that Cmψ ≡ Cψm : Σd(R) → Σ2d(R) is continuous

for all m ∈ N. And it turns out that 2d is the optimal index for studying the dynamics of
composition operators associated with polynomials of degree greater than one acting on the
Gelfand-Shilov space Σd(R) with an index d > 1.

Let us recall some concepts related to the study of the dynamics of continuous operators. In
particular, the concept of power boundedness and mean ergodicity of operators. An operator
T : X → X is said to be power bounded if {Tn : n ∈ N} is an equicontinuous set. If X is a
Fréchet space then T is power bounded if and only if {Tn(x) : n ∈ N} is bounded for each x ∈ X.
A closely related concept to power boundedness is that of mean ergodicity. Given T ∈ L(X),
the Cesàro means of T are defined as T[n] =

∑n
k=1 T

k/n. T is said to be mean ergodic when T[n]

converges to an operator P . Clearly, if T is mean ergodic then limn→∞
Tn(x)
n = 0 for each x ∈ E.

In [14], it was proved the following result for the Schwartz space S(R):

Theorem 1.1.5 Let φ be a polynomial with degree greater than or equal to two. Then, the
following are equivalent:

(1) Cφ : S(R)→ S(R) is power bounded.

(2) Cφ : S(R)→ S(R) is mean ergodic.

(3) The degree of φ is even and it has no fixed points.

We will see that the same result holds in the setting of Gelfand-Shilov classes.
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1.2 Main results

Let us begin considering the case of ψ being a polynomial of degree 1. In this case, we have that
Cψ (Sω(R)) ⊂ Sω(R).

Proposition 1.2.1 Let ψ(x) = ax+ b, with a ̸= 0. The following are equivalent:

1. Cψ : Sω(R)→ Sω(R) is power bounded.

2. Cψ : Sω(R)→ Sω(R) is mean ergodic.

3. (Cψm)m is equicontinuous in L(Sω(R),S(R)).
4. ψ(x) = x or ψ(x) = −x+ b.

The key estimate to prove Theorem 1.1.5 in our setting is the following rather technical one:

Lemma 1.2.2 Let ψ be a polynomial of degree greater than 1 without fixed points. For every
α > 1 there exist C > 0 and r > 1 such that

|ψ(n)
m (x)| ≤ Crnn!2 (1 + |ψm(x)|)α

for all x ∈ R, n ∈ N,m ∈ N.

Once we have proved Lemma 1.2.2, it is possible to show the following result:

Theorem 1.2.3 Let ω be any subadditive weight and σ(t) = ω(t
1
a ) for a > 2. Given a polynomial

ψ of degree greater than one, the following statements are equivalent:

1. ψ lacks fixed points.

2. lim
m
f ◦ ψm = 0 in Sσ(R) for every f ∈ Sω(R).

3. lim
n

1

n

n∑

m=1

f ◦ ψm exists in Sσ(R) for every f ∈ Sω(R).

4. lim
n

1

n

n∑

m=1

f ◦ ψm exists in S(R) for every f ∈ Sω(R).

We do not know whether the above results are also true for a = 2.

It may be worth making the above results explicit in the case where the weight ω is a power
of the logarithm, rather than a Gevrey weight. In this case, keeping the notation of the previous
result, Sω(R) = Sσ(R). The limit case p = 1 corresponds to [13, Theorem 3.11], since in this
case Sω(R) = S(R), despite of the fact that ω would not be strictly speaking a weight function
(Definition 1.1.4(γ) does not hold).

Corollary 1.2.4 Let ω(x) = max{0, logp(x)} with p > 1. Given a polynomial ψ of degree greater
than one, the following statements are equivalent:

1. Cψ : Sω(R)→ Sω(R) is power bonded.

2. ψ lacks fixed points.

3. Cψ : Sω(R)→ Sω(R) is mean ergodic.

Corollary 1.2.4 holds for every weight ω satisfying the following condition:

∃γ > 1 ∃C ≥ 1 ∀t ≥ 0 : ω(tγ) ≤ Cω(t) + C.
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1.1 Introduction

CAGD (Computer Aided Geometric Design) is primarily aimed at providing programmers with
solutions for the generation of smooth curves and surfaces. It does this through flexible and
efficient tools. This design provides the user with the possibility, through an initial set of control
points and the proposal of a subdivision rule, to obtain the indicated results. The system is
intuitive, requiring only the user to set the control points. The use of classical schemes such
as the four-point interpolation method [3] and its variants [8] justifies its affordability. Other
contributions, such as schemes with adjustable parameters [7] and methods dealing with noisy
data [5] make the design more adaptable and extend its reliability.

Apart from the CAGD seen, subdivision schemes draw from other sources, such as applica-
tions in approximation theory, signal processing and image compression, where, using a finite
number of basis functions, the function representation is achieved. The target properties are
compression rates, local support and computational speed. All this under the concept of multi-
resolution analysis [6]. In addition to the classical linear and stationary approaches, nonlinear
subdivision schemes have been developed to address more complex data structures and improve
flexibility in applications [4].

More recently, it is the subdivision in the context of cell-averages rather than point data
that has caused most interest, more specifically for applications involving numerical methods
for partial differential equations and volume representation. Other more classical schemes, such
as those studied in [2] and [6], have focused on point values. Adapting schemes to cell-average
data requires other types of analysis tools and other refinement rules. Thus, the most recent
advances in non-oscillatory and high regularity [1] schemes, as well as in [9], raise the current
interest in these generalisations.

The present paper first provides a brief review of the fundamentals of subdivision schemes,
and then discusses the construction and analysis of new linear subdivision schemes, in this
case for univariate cell-average data. These schemes are designed to reproduce cell-average
of polynomials of degrees less than or equal to 1, 3 and 5. We analyze the convergence and
smoothness of the limit functions using Laurent polynomial representations and the joint spectral
radius method, following the analytical framework introduced in [6].

The goal is to study the behavior of new subdivision schemes in the context of cell-averages
in 1D, already worked on for point values in [3], [6] and [9]. We analyse the reproduction,
approximation and convergence properties of the new schemes and present some numerical
experiments to validate the theoretical results and demonstrate the practical behaviour of the
proposed methods.
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1.2 Main results

Subdivision schemes are based on the successive application of certain rules to a series of control
points. First of all, let us look at a general definition.

Definition 1 (A subdivision scheme) Let f0 = {f0l }ml=1 be a series of control points. Then,
there are functions Ψ0,Ψ1 : Rm → R that define a subdivision scheme (SS) in the following way:

{
(S f0)2i = Ψ0(f

0
1 , . . . , f

0
m),

(S f0)2i+1 = Ψ1(f
0
1 , . . . , f

0
m),

with i ∈ Z.

The Chaikin algorithm serves as an example of a spline subdivision scheme, offering low
complexity converging towards functions in C1 and without Gibbs phenomenon.

Example 1 (Chaikin scheme) Chaikin introduced a simple scheme for generating curves from
a given control polygon, defined as follows:

{
(SCf

0)2i =
3
4f

0
i + 1

4f
0
i+1,

(SCf
0)2i+1 =

1
4f

0
i + 3

4f
0
i+1.

As we are going to work in the context of linear subdivision schemes, we give their particular
definition (see [6]).

Definition 2 (A linear binary SS) A SS, Sa : ℓ∞(Z)→ ℓ∞(Z), with finitely supported mask
a = {al}l∈Z is defined to refine the data on the level k, fk = {fkj }j∈Z ∈ ℓ∞(Z), as:

fk+1
2j+i := (Saf

k)2j+i :=
∑

l∈Z
a2l−if

k
j+l, j ∈ Z, i = 0, 1.

We call even mask to a0 = {a2l}l∈Z and odd mask a1 = {a2l−1}l∈Z.

Once we know the definition of subdivision scheme, we ask ourselves how do we understand
the points. They can be understood as a point measurement, which is the value of the function
at the point and we call it point values, or they can also be understood as an average of a cell,
which is an integral and we call it cell-averages.

Let xki = ihk equispaced points, with k ∈ N, i ∈ Z. The discretization operator is defined in
each case in this way:

Definition 3 (Discretization operator in point values) We define the discretization op-
erator as the value of the function at a point of the mesh, i.e.,

fki := f(xki ).

Definition 4 (Discretization operator in cell-averages) We define the discretization op-
erator as the average over the cell cki = (2−k(i− 1), 2−ki), i.e.,

f̄ki := 2k
∫

cki

f(x)dx.

In our case, it is possible to work with cell-averages because in an image we have pixels and
the colour of these pixels is determined by the integral, i.e., the average of the intensity in that
square.
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1.2.1 The cell-average scheme for p = 1, 3, 5

In 1D, we consider our data as the cell-average of an integrable function f ∈ L1(R). Thus, let
xki = ihk, k ∈ N, i ∈ Z and hk = 2−k be a grid; the data cells are defined as:

f̄ki =
1

hk

∫ xki +
hk
2

xki −
hk
2

f(x)dx.

We will construct new linear refinement rules that reproduce cell-average of polynomials with
degrees less than or equal to p = 1, 3, 5. Therefore, we will have

(Spf̄
k)2j =

p−1
2∑

l=− p−1
2

βpl f̄
k
j+l,

(Spf̄
k)2j+1 =

p−1
2

+1∑

l=− p−1
2

αpl f̄
k
j+l.

In Table 1.1 we show the results of the masks for p = 1, 3, 5.

β1l α1
l β3l α3

l β5l α5
l

l = 0 1 1
2

17
16

37
64

1109
1024

1247
2048

l = 1 1
2 − 1

32
37
64 − 23

512
1247
2048

l = 2 − 5
64

7
2048 − 509

4096

l = 3 63
4096

Table 1.1: Masks of cell-average subdivision for p = 1, 3, 5. Note that αpl = αp−l and β
p
l+1 = βp−l,

l = 1, . . . , p−1
2 .

We will now perform an analysis of the convergence and smoothness of these schemes. The
classical definition of a convergent subdivision is the following [6]:

Definition 5 (A uniformly convergent subdivision scheme) A SS Sa is uniformly con-
vergent if for any initial data f0 ∈ ℓ∞(Z), there exists a continuous function F : R → R such
that

lim
k→∞

sup
j∈Z
|(Ska f0)j − F (2−kj)| = 0.

We denote by S∞
a f0 = F to the limit function generated from f0 and we write Sa ∈ Cd if all

the limit functions have such smoothness, S∞
a f0 ∈ Cd, ∀ f0 ∈ ℓ∞(Z).

The 2-cell-average scheme with p ∈ Π1 that we propose is:

fk+1
2j = fkj ,

fk+1
2j+1 =

1

2
fkj +

1

2
fkj+1.

(1.1)

This is the piecewise linear scheme, which is the simplest example of an interpolatory subdi-
vision scheme. We represent the basic limit function. The original points are represented with
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blue spheres while the points resulting from the corresponding iterations are represented with
red dots.

0 5000 10000 15000
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0.9

1

original

current

Figure 1.1: Basic limit function of the 2-cell-average scheme defined by (1.1) with the following
parameters: 15 initial points, 10 iterations.

We can see in Figure 1.1 that the limit is the piecewise linear interpolant to the data, so we
can predict that the scheme will be C0 but not C1.

The 4-cell-average scheme with p ∈ Π3 that we propose is:

fk+1
2j =

(
1 +

1

16

)
fkj −

1

32
(fkj−1 + fkj+1),

fk+1
2j+1 =

37

64
(fkj + fkj+1)−

5

64
(fkj−1 + fkj+2).

(1.2)

We represent the basic limit function, as in the previous case.

0 5000 10000 15000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

original

current

Figure 1.2: Basic limit function of the 4-cell-average scheme defined by (1.2) with the following
parameters: 15 initial points, 10 iterations.

In order to get a closer look at the surroundings near the jump, we performed the following
zooms that can be seen in the Figure 1.3.
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(a) (b) (c)

Figure 1.3: Zooms of the basic limit function in Figure 1.2 divided into three different regions:
(a) x ∈ [3500, 7000]; (b) x ∈ [5500, 9000]; (c) x ∈ [7500, 10500].

To give a more supported prediction, we plot the approximation of the derivatives corre-
sponding to this case. We can see this in the Figure 1.4.
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Figure 1.4: (a) Approximation of the first derivative; (b) Approximation of the second deriva-
tive.

There are no peaks in the function, so we can predict that the scheme will be C1 but not
C2.

Finally, the 6-cell-average scheme with p ∈ Π5 that we propose is:

fk+1
2j =

1109

1024
fkj −

23

512
(fkj−1 + fkj+1) +

7

2048
(fkj−2 + fkj+2),

fk+1
2j+1 =

1247

2048
(fkj + fkj+1)−

509

4096
(fkj−1 + fkj+2) +

63

4096
(fkj−2 + fkj+3).

(1.3)

We perform the same process as before.
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Figure 1.5: Basic limit function of the 6-cell-average scheme defined by (1.3) with the following
parameters: 15 initial points, 10 iterations.
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Figure 1.6: Zooms of the basic limit function in Figure 1.5 divided into three different regions:
(a) x ∈ [3500, 7000]; (b) x ∈ [5500, 9000]; (c) x ∈ [7500, 10500].
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Figure 1.7: (a) Approximation of the first derivative; (b) Approximation of the second deriva-
tive; (c) Approximation of the third derivative.

By looking at the Figures 1.5, 1.6 and 1.7, we can predict that the scheme will be C2 but
not C3.

Using classical techniques we prove that it is convergent, which in this case being linear is
easy to prove. So let us look at the Laurent polynomial formulation.

Given a subdivision scheme Sa, with coefficients a = {aj}j∈Z, we define an associate Laurent
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polynomial

a(z) =
∑

j∈Z
ajz

j ,

which is the symbol of Sa. The values generated at level k of the subdivision, namely {fkj }j∈Z,
define a formal Laurent series

Fk(z) =
∑

j∈Z
fkj z

j ,

satisfying the relation

Fk+1(z) = a(z)Fk(z
2).

So this polynomial allows us to have the property that if it is contractive (the segments are
closing) it finally gives us a continuous function.

Definition 6 (Contractive subdivision scheme) A subdivision scheme is termed ‘contrac-
tive’ if it sends any initial data to a zero limit.

Defining

b[l](z) =
l−1∏

i=0

b
(
z2

i
)
=
∑

i

b
[l]
i z

i,

we have the Laurent series representation of a subdivision scheme transforming values at level
k directly to values at level k + l. The number of points is multiplied by 2l, hence, there are
2l rules. Contractivity follows if the sum of absolute values of the coefficients of each of these
rules is less than 1:

∑

i

∣∣∣b[l]2li+r
∣∣∣ < 1, 0 ≤ r < 2l.

The following result allows us to check the Cr convergence:

Theorem 1 (Condition for Cr) Sa is Cr-convergent iff the scheme defined by b[r](z)
z−1+1

is con-
tractive.

To analyze the convergence and the smoothness of the limit function, we can use the ‘joint
spectral radius’ analysis (JSR).

The joint spectral radius is defined as:

ρ(Q0, Q1) = lim
m→∞

sup (max {∥Qi1Qi2 . . . Qim∥∞ : ij ∈ {0, 1}, j = 1, . . . ,m})1/m ,

where the matrices Q0 and Q1 are obtained by changing the basis.

To show that the scheme is Ck it remains to verify that ρ(Q0, Q1) < 2−k. The Hölder
exponent of the k-th derivative of the limit function is defined by ν = − log2 ρ(Q0, Q1)− k.

On the one hand, the 4-cell-average scheme defined by (1.2) is C1 because the JSR is less
than 0.5 after 15 iterations, as we can see in the Figure 1.8.
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Figure 1.8: The 4-cell-average scheme defined by (1.2) is C1.

We repeat the previous process and we can see that the JSR is greater than 0.25 after 15
iterations, so the scheme is not C2, as we can see in the Figure 1.9 with the corresponding graph
and a zoom to see it more clearly.
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Figure 1.9: The 4-cell-average scheme defined by (1.2) is not C2.

On the other hand, the 6-cell-average scheme defined by (1.3) is C2 because the JSR is less
than 0.25 after 18 iterations, as we can see in the Figure 1.10. We zoom in slightly to make it
clearer.
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Figure 1.10: The 6-cell-average scheme defined by (1.3) is C2.

We repeat the previous process and we can see that the JSR is greater than 0.128 after 15
iterations, so the scheme is not C3, as we can see in the Figure 1.10 and we also zoom in and
out.

83
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Figure 1.11: The 6-cell-average scheme defined by (1.3) is not C3.

1.3 Numerical experiments

Finally, we perform numerical experiments in order to analyze the numerical behavior of the
schemes. We start by checking the cell-average of polynomial reproduction for each configured
mask.

We take a mesh equispaced between 0 and 1 of 50 initial points and apply 5 iterations, where
in each iteration the distance between the points is divided by 2. We can see the final result for
polynomials of degrees 1, 3 and 5 in Figure 1.12.
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(a) p = 1 (b) p = 3 (c) p = 5

Figure 1.12: The cell-average of polynomial reproduction with degrees 1, 3 and 5 applying the
schemes defined by: (a) the 2-cell-average scheme (1.1) ; (b) the 4-cell-average scheme (1.2);
(c) the 6-cell-average scheme (1.3).

Evidently we see that the error is zero and therefore we conclude that our schemes reproduce
the cell-average of polynomial reproduction.

To end this part, we apply these schemes to the design of 1D curves in order to study the
smoothness of the constructed cell-average schemes. We start with a control polygon used in
some articles (see [8]) and we can see the graphs obtained in Figure 1.13.
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(a) p = 1 (b) p = 3 (c) p = 5

Figure 1.13: Control polygon of the word “Go” (see [8]) applying the schemes defined by: (a)
the 2-cell-average scheme (1.1) ; (b) the 4-cell-average scheme (1.2); (c) the 6-cell-average
scheme (1.3). The blue dot marker represent the original points while the black line joins the
interpolation points by applying the corresponding method.

It is observed that, the higher the degree of the polynomials of the scheme used, the smoother
the smoothness is obtained due to the disappearance of peaks in the function.

We continue to apply our cell-average schemes to other control polygons, such as a star. In
particular, we take a six-pointed star that can be found in [1].

(a) p = 1 (b) p = 3 (c) p = 5

Figure 1.14: Control polygon of the six-pointed star (see [1]) applying the schemes defined by:
(a) the 2-cell-average scheme (1.1) ; (b) the 4-cell-average scheme (1.2); (c) the 6-cell-average
scheme (1.3). The blue dot marker represent the original points while the black line joins the
interpolation points by applying the corresponding method.

In Figure 1.14, we can observe the same fact as we have seen above, so that smoothness is
obtained in cell-average schemes (1.2) and (1.3).

We finish the numerical experiments with another figure that can be found in [1] and is a
control polygon that has the shape of a bat. The results can be seen in Figure 1.15.
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(a) p = 1 (b) p = 3 (c) p = 5

Figure 1.15: Control polygon of a bat (see [1]) applying the schemes defined by: (a) the 2-cell-
average scheme (1.1) ; (b) the 4-cell-average scheme (1.2); (c) the 6-cell-average scheme (1.3).
The blue dot marker represent the original points while the black line joins the interpolation
points by applying the corresponding method.

Therefore, we observe that in the design of 1D curves our schemes are smoother the higher
the degree of the polynomial we interpolate, as expected.

1.4 Conclusions

In this paper, new linear refinement rules have been constructed to define new subdivision
schemes that reproduce cell-average of polynomials with degrees less than or equal to 1, 3 and
5, as shown by numerical experiments, as well as the study of the smoothness of these schemes.
It should be noted that these designed cell-average subdivision schemes can be extended to
any degree. In addition, other theoretical properties are being studied. As future work, the
procedure will be extended to two-dimensional schemes for further application to digital image
processing, with the aim of evaluating its performance in tasks such as reconstruction and
resolution enhancement for comparison with existing techniques in this field.
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subdivision schemes having regularity Cr with r > 1, Numerical Algorithms, 85: 543 – 569,
2020.

[2] G. Deslauriers and S. Dubuc, Symmetric Iterative Interpolation Processes, Const. Ap-
prox.: 49–68, 1989.

[3] N. Dyn, D. Levin, J. A. Gregory, A 4-point interpolatory subdivision scheme for curve
design, Comput. Aided Geom. Des., 4(4): 257–268, 1987.

[4] N. Dyn , Three Families of Nonlinear Subdivision Schemes, Studies in Computational
Mathematics, 12: 23–38, 2006.

[5] N. Dyn, A. Heard, K. Hormann and N. Sharon , Univariate subdivision schemes for
noisy data with geometric applications, Comput. Aided Geom. Des., 37: 85–104, 2015.

[6] N. Dyn and D. Levin, Subdivision Schemes in Geometric Modelling, Acta Numerica:
73–144, 2002.

86
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1.1 Introduction

Behavioral models are schemes that describe, explain and predict how individuals, groups or
systems behave in certain contexts or situations. These models are fundamentally based on how
people act in reality, collecting data on their behavior and reducing the complexity of human or
social behavior to focus on the most relevant aspects. In addition, it helps to anticipate future
reactions to certain stimuli or contexts. These models are used to build design strategies in
various areas such as education, business, health and technology.

These models can be reduced to mathematical formulations that bring together all the ele-
ments of such models. In this way the elements can be manipulated to obtain new mathematical
representations which yield valuable information that would not be obtained by maintaining the
language of the science involved.

1.2 Main Transmission Models

In mathematics there are two models: deterministic and stochastic. The former are those models
that give exact results, since in the theory the factors involved in the process or phenomenon
can be controlled. On the other hand, in a stochastic model these factors cannot be controlled,
since the random processes that are present make the results neither simple nor unique.

We must be clear that in a deterministic model a single individual can cause an epidemic,
while in a stochastic model it can happen that the epidemic disappears, so that some stochastic
solutions converge to a disease-free state even though their corresponding deterministic solution
converges to the endemic equilibrium. [?]

The SIR (Susceptible-Infected-Recovered) model has its origin in the study of epidemics
through mathematical tools, developed by William Ogilvy Kermack and Anderson Gray McK-
endrick in 1927. Their seminal paper, entitled “A Contribution to the Mathematical Theory of
Epidemics”, was published in the Proceedings of the Royal Society of London.

In this model, the division of the population into compartments was introduced.:

• S(t): Number of susceptible individuals (those who can contract the disease).

• I(t): Number of infected individuals (those who are infectious and transmit the disease).
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• R(t): Number of recovered individuals (immune or deceased, no longer involved in trans-
mission).

1.3 Construction of the SIR model

We need to explain how the SIR arose, since it would be considered a fundamental pillar for
the formulation of new dynamical systems for modeling that describe the behavior of infectious
diseases.

In this sense, Kermack and McKendrick begin by considering that infections happen at the
instant of passing from one interval to another, where the size of the interval is denoted by
t. That is, the unit of time, where it can be considered constant. In addition, the number of
individuals is denoted by vt,θ, where the number of individuals is influenced by t and by the
number of intervals θ, in other words the infections that occur at each instant.

Then, the total number of sick people in the interval t is considered to be

yt =
t∑

θ=0

vt,θ

Where the following is denoted: vt,0: number of individuals who are starting their infection.
vt : number of individuals that are in the process of infection during the transition to the

next interval.
In wich, vt,0 = vt except at the origin or onset of infection where it is present,,

v0,0 = v0 + y0

This is because it is assumed that a certain number y0 of the population has been recently
infected. This described process indicates the process of recovery or death of each individual
involved in the infection of the population.

Then, the following parameters are presented:
ψθ : elimination rate, which is the sum of the rate of deaths and recoveries. ψθvt,θ : the

number of people removed from each interval t. That is, ψθvt,θ = vt,θ − vt+1,θ+1

Therefore, it can be assumed vt,θ = vt−θ,0 Bθ, donde Bθ = (1−ψ(θ−1))(1−ψ(θ−2)) . . . (1−
ψ(0)). Thus new parameters are presented, in which vt is defined,

vt = xt

t∑

θ=1

Φθvt,θ.

xt : number of unaffected individuals
Φθ : rate of infectious capacity in θ. It is worth noting that Phiθ = 0 at the time the

individual is infected.
This equality is assumed since the chance of infection is proportional to the number of

infected and uninfected. Next, xt = N − sumt
θ=0vt − y0, with N equal to the initial population

density. Next, we define a new variable zt which indicates the number of individuals killed or
recovered, so we can express N = xt + yt + zt.

Based on this last equality and what has been explained, the following equations are defined,

vt = xt

(
t∑

θ=1

Aθvt−θ +Aty0

)

with Aθ = ΦθBθ.
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Then, yt =
∑t

θ=0Bθvt−θ +Bty0
By definition of vt we have

vt = xt − xt−1 = xt

(
t∑

θ=1

Aθvt−θ +Aty0

)
.

The number of persons removed is denoted by
zt+1 − zt =

∑t
θ=1Cθvt−θ + Cty0

with Cθ = ψθBθ.
In the same way, the following is defined

yt+1 − yt = xt

(
t∑

θ=1

Aθvt−θ +Aty0

)
−
(

t∑

θ=1

Cθvt−θ + Cty0

)

Thus, if the interval is divided into smaller subintervals, i.e. we tend to the limit the following
equations, we have

−vt = −xt + xt−1 ⇒ vt = −dxt
dt

vt = xt − xt−1 ⇒
dxt
dt

= (−xt)
∫ t

0
Aθvt−θdθ +Aty0

zt+1 − zt ⇒
dzt
dt

=

∫ t

0
Cθvt−θdθ + Cty0

yt ⇒
∫ t

0
Bθvt−θdθ +Bty0

Now, Bθ = e−
∫ θ
0 ψ(a)da and these new equalities determine the functions x, y, zyv.

Then omitting t from dx−t
dt when necessary and taking x as a function of theta we have

dx

dt
= (x)

∫ t

0
At−θ

dxθ
dθ

dθ −Aty0

When solving this equation, knowing that A0 = 0, given that the individuals are not infec-
tious at the instant of transmission and assuming that N = x0 + y0 we have

d log x

dt
= −AtN +

∫ t

0
A′θxt−θdθ.

This last integral equation cannot be solved in such a way that it gives us x in terms of t. But,
it is observed that this equation is similar to Volterra’s equation f(t) = Φ(t) +

∫ t
0 N(T, θ)Φ(θ)dθ

where f(t) is taken as fracdf(t)dt.
Thus, if we consider the equation of the form

d log x

dt
= At + λ

∫ t

0
N(t, 0)x(θ)dθ,

which could be solved through a series of successive approximations, using the same method
to solve the Volterra equation, i.e. x = f0(t) + f1(t) + λ2f2(t) + . . ., substituting in dx

dt =

(x)At + λ
∫ t
0 N(t, 0)x(θ)dθ, where it is obtained

dfn(t)

dt
=fn(t)At + fn−1(t)

∫ t

0
N(t, θ)f0(θ)dθ + fn−2(t)

∫ t

0
N(t, θ)f1(θ)dθ + . . .

+ f0(t)

∫ t

0
N(t, θ)fn−1(θ)dθ

= Ln−1(t).
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That when solving the differential equation d
dtfn(t) = Ln−1(t)

fn(t)e−
∫ t
0 Atdt =

∫ t

0
Ln−1(t)e−

∫ t
0 Atdtdt+ C

Thus, fn(0) = 0 when n > 0, since the initial condition is independent of lambda so that the
integration constants are 0, except when f0(0), we have

df0(t)

dt
= f0(t)At ⇒ f0(t) = f0e

∫ t
0 Atdt ⇒ f0(0) = x0.

In this sense, the solution for the integral equation is as follows

x = (Et)x0 +
∞∑

θ=1

∫ t

0

Ln−1(t)
Et

dt

Where, Et =
∫ t
0 Atdt y λ = 1. Thus, writing in general form d log x

dt we have

d log x

dt
= At +

∫ t

0
Qt−θxθdθ

Then, multiplying by e−zt and integrating between 0 and t we have

log x0 +

∫ ∞

0
ze−zt log xdt = F (z) + F1(z)

∫ ∞

0
e−ztxtdt.

Where F (z) =
∫∞
0 e−ztAtdt, F1(Z) =

∫∞
0 e−zθQθdθ and applying limit when t tends to e−zt log x

is 0, provided that x does not exceed the initial value N − y0. Thus we obtain

∫ ∞

0
e−zt(z log x− F1(z)x)dt = F (z) + log x0

which can be viewed as a first type Fredholm equation.

∫ ∞

0
Φ(x, z)ψ(z, t)dt = χ(z).

Then, we again take the equation d log x
dt this time integrating between 0 y ∞.

−
∫ ∞

0

d log x

dt
dt =

∫ ∞

0

∫ t

0
Aθvt−θdθdt+ y0

∫ ∞

0
Atdt,

so that log x0
x∞

= A(N − x∞).

with A =
∫∞
0 Atdt y

∫∞
0 vtdt = x0−x∞.Now we denote a new parameter p = N−x0

N , which is
the proportion of the infected population in the epidemic which is useful for having the following
expression,

− log
1− p
1− y0

N

= ANp.

Analogously, we have ∫ ∞

0
ytdt = Np

∫ ∞

0
Bθdθ

Where
∫∞
0 Bθdθ is the average duration of each case.

Despite the construction of these last equations in terms of x, y and z the information may
be incomplete in some cases. That is to say, the problem lies in obtaining information Aθ and
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Bθ consequently also Φ(θ) y ψ(θ). Then the equation is taken again dxt
dt , in which Fock’s method

is used to obtain information Aθ and Bθ. In this way, using vt y d log x
dt we have

Aθ =
1

2πi

∫ a+i∞

a−i∞
eztF2(z)dz

Bθ =
1

2πi

∫ a+i∞

a−i∞
eztF3(z)dz

with F2(z) = y F3(z) =.

It should be noted that the author offers a simpler solution for special cases. In this case,
one could say that by stating these special cases, one would be stating the fundamental basis
for the SIR model, as it is known today. The case focuses on the early stages of an epidemic in
a large population. Thus taking dx

dt = vt and applying Fork’s method we have

∫ ∞

0
e−ztvtdt =

Ny0
∫∞
0 e−ztAtdt

1−N
∫∞
0 e−ztAtdt

:= F4(z)

⇒ vt =
1

2πi

∫ a+i∞

a−i∞
eztF4(z)dz

Analogously for yt

∫ ∞

0
e−ztytdt =

y0
∫∞
0 e−ztBtdt

1−N
∫∞
0 e−ztAtdt

⇒ yt =
1

2πi

∫ a+i∞

a−i∞
eztF5(z)dz.

Therefore, the integral equation of yt is

yt = N

∫ t

0
At−θyθdθ +Bty0.

On the other hand, taking vt,0 = vt assuming that this equality is not true on an interval of
[0, ε] and the integral equation

∫ ε
0 vt,0dt = y0 is not satisfied.

As a result

vt,0 = vt,0 − vε,0 + vε,0 =

∫ t

0
At−θvθdθ +Aty0.

Written differently

vt,0 =
1

2πi

∫ a+i∞

a−i∞
eztF (z)dz

where F (z) = y0
1−A con A =

∫∞
0 e−zθAθdθ.

Now, if vt has no singularities, the Laplacian solution of F4(z) is a function without singu-
larities and, therefore, the Laplacian of y0 corresponds to the singularity.

A review of the parameters that were considered to study the pandemic that caused the
Bubonic plague in Bombay, where Kermack and McKendrick (1927) implemented a mathemat-
ical model, in which they stated the following equations,
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



dx
dt = −kxy
dy
dt = kxy − ly
dz
t = ly

There is some discrepancy in how these parameters were treated. Seg’un Bacaer (2012) says
that “the Kermack and McKendrick model did not take seasonality into account”. That is to
say, when this model was first enunciated, the authors did not take into account the periodic
variation of the model parameters with respect to time, such as the seasons, social behaviors,
biological factors, among others. In addition, he comments that there is no explicit information
on N (population), since it allows us to establish a certain possible size at the end of the
epidemic, as well as the basic reproductivity number R0.

Currently, there are several mathematical models that model the spread of epidemics. In
continuing the study of the SIR model, it has now been more clearly stated and has undergone
some modifications involving new parameters, which have been of great help in understanding
the behavior of epidemics.

Therefore, the SIR model is described as follows,

dS

dt
= −rβS I

N
dI

dt
= rβS

I

N
− γI

dR

dt
= γI.

Where the basic reproductivity number is the number of new infections that an infected
person can cause in a susceptible population over its entire infectious period, where this number
is only valid for homogeneous autonomous models and is denoted as:

R0 = r × β × 1

γ
=
rβ

γ
,

In which the parameters describe

• r : Number of contacts per time unit

• β : probability of contact transmission

• 1
γ : Infectiousness duration

• S : susceptible humans

• I : infectious humans

• R : recovered humans

• N = S + I +R

Thus, this model cannot be solved analytically. Where it is possible not to consider the
equation of recovered humansR. Moreover, this model can estimate the final size of the epidemic.

Thus, the SIR endemic model can be enunciated, which unlike the SIR model, all equations
must be taken into account, where there are two equilibrium points such as endemic and disease-
free. Where the reproductivity number R0 unlike the SIR model the duration of infection is

defined as
1

γ + µ
.
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dS

dt
= Λ− rβS I

N
− µS

dI

dt
= rβS

I

N
− γI − µI

dR

dt
= γI − µR

The endemic break-even point defines the following:

See =
Λ(γ + µ)

rβµ

Iee =
Λ(rβ − (γ + µ))

rβ(γ + µ)

Ree =
γΛ(rβ − (γ + µ)

rβµ(γ + µ)

The disease-free break-even point defines the parameters as follows: Sefe =
Λ

µ
, Iefe = 0 y

Refe = 0, where:

• Λ : Constant recruitment rate

• µ : Per capita disposal rate

Finally, the SEIR model adds a new main parameter based on the models that have been
previously stated. Thus, the new parameter that is added refers to exposed (latent) humans E,
in which it additionally derives the per capita rate of progression to the infectious state ε.

Where the reproducibility number is defined as

R0 = r × β × 1

γ + µ
× ε

ε+ µ

=
rβε

(γ + µ)(ε+ µ)

with
ε

ε+ µ
: probability of surviving the exposed stage.

1.3.1 Kermack and McKendrick assumptions

Kermack and McKendrick propose that in limited, i.e. well-demarcated populations, epidemics
begin their course and eventually end, furthermore, they rename the φ = k, y ψ = l. Thus the
equations would be given by 




dx
dt = −kxy
dy
dt = kxy − ly
dz
dt = ly

and x, y, z = N , in this way we can have that: dx
dz = −k

l x, where

dz

dt
= l(N − x− z) = l(N − x0e−

k
l
z − z)
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Kermack and McKendrick (1927), in their work assume that deaths from natural causes during
the course of the epidemic are negligible and that the population growth rate is zero.

At this point, returning to the last equation, it can be said that it is not possible to obtain z

as an explicit function of t. An expansion is used for e−
k
l
z, since in initial stages of the epidemic

the number of individuals removed z, is small compared to the total population N .

e−
k
l
z = 1−

(
k

l

)
z +

1

2!

(
k

l

)2

z2 − · · ·

results in a first-order approximation

e−
k
l
z ≈ 1− k

l
z

then,

dz

dt
≈ l
(
N − x0 +

k

l
x0z −

x0
2

(
k

l

)2

z2 − z
)
,

If y0 = N − x0 for a very small value of y0. This Riccati equation has an explicit solution
for z and gives the number of deaths per unit time.

z =
l2

k2x0

(
k

l
x0 − (−b)1/2tanh

(√−b
2

lt− φ
))

,

where

φ = tanh−1
(
k
l x0 − 1√
−b

)
,

√
−b =

((
k

l
x0 − 1

)2

+ 2x0y0
k2

l2

)1/2

.

.
Subsequently, towards the end of the epidemic we have:

z =
2l

kx0

(
x0 −

l

k

)
,

let us take into account that y0 is small and negligible at the beginning of the epidemic if we
compare it with x0. Now, x0 ≈ N and x0 = l

k , at this point there is no room for an epidemic,

but if N slightly exceeds this value a small epidemic would occur, i.e., we would have N = l
k +n,

in this case

z =
2nl

Nk
= 2n− 2

n2

N
,

if n is very small, N0 = l
k would be the density threshold. It should be noted that no epidemic

can occur if the population density does not exceed this value.
Now let’s focus on the expression

−log 1− p
1− y0

N

= ApN,

here y0
N , is a portion of infected and p is a fraction of infected population during the epidemic;

and represent how they are connected through the spread, considering the interaction with the
transmission and removal rates. Describing the expression in a little more detail, 1 − p is the
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population that was not affected by the epidemic, and 1 − y0
N as the initial fraction of the

population that was susceptible.
If A is large, even a small fraction of initial infected (fracy0N) can lead to significant

epedimia (p close to 1), and if A is small the epidemic is rapidly self-limiting.
If p > 0 , then N0 >

1
A would generate an epidemic.

1.4 Conclusion

Mathematical models have made it possible to understand human behavior in order to predict
and manipulate new schemes of development and social behavior through mathematical formu-
lations, where the capacity for analysis facilitates the obtaining of new perspectives applicable
to diverse areas of knowledge.
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albertord.bg@gmail.com

1.1 Abstract

In information transmission and processing, error correction plays a crucial role in both classical
and quantum systems. This paper begins with an introduction to classical coding theory, ad-
dressing how error-correcting codes allow error detection and correction in noisy channels, high-
lighting methods such as maximum likelihood decoding in binary symmetric channels. Next, we
explore the fundamentals of quantum computing, emphasising how qubits, affected by phenom-
ena such as quantum noise and decoherence, demand new correction strategies. Finally, we will
focus on quantum error-correcting codes, including bit-flip, phase-flip, and Shor’s code, which
combine classical concepts with quantum adaptations. We will also examine CSS codes, which
leverage classical algebraic structures to address the challenges of quantum noise, showing their
relevance in the construction of stable and functional quantum systems.

1.2 Basics of coding theory

In this section we will offer a brief introduction to coding theory, giving the main definitions
and results, and introducing the minimum viable content to understand quantum coding. We
will follow the approach made in [8], and taking some ideas from [2].

1.2.1 Introduction

Definition 1. A q-ary code C written in the alphabet A = {a1, a2, . . . , aq} of q symbols is a
finite subset of

An = {(ai1 , ai2 , . . . , ain) | aij ∈ A, for j = 1, 2, . . . , n}.

The elements of C are called codewords.

We will use juxtaposition and write ai1ai2 . . . ain instead of tuple notation.
To transmit a message written in a specific alphabet, referred to as the font alphabet, we first
encode the information into a code alphabet, which does not necessarily need to match the font
alphabet.
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Definition 2. An encoding scheme of a font alphabet S is a pair (C, φ) consisting of a q-ary
code C and a bijective map φ : S → C called encoding.

Let’s see an example of an encoding scheme.

Example 1. Let S = {A,B,..,Z, } be the font alphabet consisting on all the letters in the
spanish alphabet and the blank space, and the code C = {00, 01, ..., 27} written in the alphabet
A = {0, 1, ..., 9}. Then, the map φ : S → C given by

φ(A) = 00, φ(B) = 01, φ(C) = 02, . . . , φ(Z) = 26, φ( ) = 27,

is an encoding of S. Therefore, we may use this encoding to encode any message, such as:

VIVA EL ALGEBRA

This message is encoded as

220822002704112700110604011800.

We will typically consider A to be the finite field of q elements Fq, where q is a prime power.
Consequently, unless otherwise specified, the alphabet under consideration will be Fq.

The following example is one of the simplest classical code.

Example 2. Consider the code in which each element α ∈ Fq is encoded as αα · · ·α, an n-tuple
of n α symbols. For instance, the binary repetition of length 2 is simply Rep2(2) = {00, 11}. In
general, we define

Repq(n) = {
(n)︷ ︸︸ ︷

00 · · · 0,
(n)︷ ︸︸ ︷

11 · · · 1, . . . ,
(n)︷ ︸︸ ︷

(q − 1)(q − 1) · · · (q − 1)}.

This code is called a repetition-type code.

1.3 Error-correcting codes

To transmit information encoded as codewords, a communication channel is required. However,
errors may occur during transmission, leading to a situation where the word received from the
channel does not match the one initially sent. Therefore, a process is needed to identify and, if
possible, correct these errors. This is what we call decision scheme.

1.3.1 Introduction and errors in the communication channel

To create an effective decision scheme, we must first introduce some definitions and concepts
related to the search for suitable error-correcting codes.

Definition 3. Let A = {a1, a2, ..., aq} be a font alphabet. A set of conditional probabilities

{P (aj received | ai sent) | 1 ≤ i, j ≤ q}

is said to be a probabilities channel regarding A.

Definition 4. A communication channel is a pair (A,F) consisting of a font alphabet A and a
probabilities channel F regarding A.

Depending on the nature of a communication channel, we can classify different types of
these. We will show some of the most important channels:

98
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1. A no-memory channel is a channel (A,F) in which for two words
x = x1x2 · · ·xn, y = y1y2 · · · yn ∈ An it is verified

P (x received | y sent) =

n∏

i=1

P (xi received | yi sent).

2. A q-ary symmetric channel is a no-memory channel (A,F) in which |A| = q that satisfies:

• For every 1 ≤ i ≤ q and some p ∈ [0, 1] it is verified

P (ai received | ai sent) = 1− p.

• The larger the size of A, the larger p could be in the sense that

1− p > 1

q
iff p <

q − 1

q
.

1.3.2 Decision schemes: Maximum likelihood method

As we mentioned above, we need methods which helps us to identify and correct errors in the
information transmission. We will study the maximum likelihood method.

Let (A,F) be a no-memory channel and C a code in A. If we have received a word x ∈ An,
the maximum likelihood method consists of decoding the word x as a word cx ∈ C which verifies

P (x received | cx sent) = max
c∈C
{P (x received | c sent)}.

Note that the word cx may not be unique. Then we can distinguish two different maximum
likelihood methods based on this fact:

1. Complete: We choose one of the words cx arbitrarily.
2. Incomplete: It is admitted that an error has occurred and retransmission of the message

is requested.

Example 3. Let C = {00, 10, 01} binary code associated to a binary symmetric channel of
probabilities with error probability p < 1

2 . If we receive the word 11, then note that:
1. P (11 received | 01 sent) = p(1− p),
2. P (11 received | 10 sent) = p(1− p),
3. P (11 received | 00 sent) = p2.

Therefore, the complete maximum likelihood method tells us that we can either choose 10 or
01 as a decoded word. Now consider the code C = {00, 10}. In this case, applying the same
algorithm 10 is the unique codeword that verifies the maximum likelihood condition. Hence, we
choose 10 as the decoded word.

In some cases where we can find an easy algorithm which determines the words that verify
the maximum likelihood condition.

Theorem 1. Consider a binary symmetric channel where the probability error in a symbol is
p < 1

2 . Then, the maximum likelihood method consists of choosing the codewords that have the
least number of different components from the received word.

This proof can be found in [7].
At this point, we could ask ourselves what kind of benefits coding offers us. As in the

hypotheses of the previous theorem, we suppose that we want to transmit information through
a binary symmetric channel where the probability error in a symbol is p < 1

2 .
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If we want to transmit a single bit to a receiver without using a specific code, then the
receiver receives the wrong bit with probability p (we are assuming that each bit gets flipped
independently). However, we now suppose that we use the binary repetition code of length 3
and we try to decode the message through the maximum likehood method. By Theorem 1, the
probability of decoding correctly a received word is the probability that at most one of the three
bits gets flipped. The probability that two bits get flipped during transmission is 3p2(1 − p).
Furthermore, the probability that three bits get flipped during transmission is p3. Thus, the
probability that we do not decode correctly the information is:

3p2(1− p) + p3 = 3p2 − 2p3

In the following graph we compare the probability of not decoding correctly when the repetition
code is used and when it is not used:

Figure 1.1: Error probability in decoding

Note that for p < 1
2 the process of encoding and decoding results in a decrease in the

probability of receiving a wrong bit. This does not mean the code completely vanishes the
probability of error, but rather that it significantly decreases the likelihood of it. In fact,
observe that when p ≥ 1

2 the code behalves the opposite, it actually increases the likelihood of
receiving the wrong bit.

1.4 Linear and dual codes

In order to work with quantum codes, it is essential to study a specific type of code known as
linear codes. Additionally, we must discuss dual codes, which are directly related to linear codes,
as they are derived from them. Furthermore, dual codes are fundamental for the construction
and study CSS codes, a particular class of quantum error-correcting codes.

Definition 5. A subspace C of Fnq , where n ∈ N, is called a q-ary linear code.

Note that a q-ary linear code is a q-ary code. Since a q-ary linear code is a linear subspace
it has a dimension. Thus, if C ⊆ Fnq be a q-ary linear code of dimension k we say that C is
a q-ary [n, k]-code. For example, the repetition code Rep2(2) = {00, 11} is a [2, 1]-code since
Rep2(2) = ⟨11⟩.

The notions of bilinear and sesquilinear forms can also be defined for finite fields.

Definition 6. The function ⟨·, ·⟩ : Fnq × Fnq → Fq given by

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn, for all x, y ∈ V,

is a non-degenerated symmetric bilinear form.
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Now, we will define a dual code using the orthogonal subspace of a subspace of Fnq and its
properties.

Definition 7. Let C be a q-ary [n, k]-code, then define

C⊥ :=
{
x ∈ Fnq | ⟨x, c⟩ = 0, for all c ∈ C

}
.

Note that C⊥ is a subspace of Fnq . Thus, it is a linear code itself.

Theorem 2. Let f be a non-degenerated symmetric bilinear form in Fnq and suppose that C is a

subspace of Fnq . Then dim(C) + dim(C⊥) = n.

Definition 8. Let C be a q-ary [n, k]-code. Then the dual code of C is the q-ary [n, n−k]-code C⊥.

1.5 Basics of quantum computation

1.5.1 Quantum postulates

Although our goal is not to explore quantum codes from a physical perspective, it is essential
to understand and keep in mind the postulates of quantum mechanics, as they provide the
mathematical framework on which we will base the entire development of this work.

We will not delve into the origins or physical interpretations of these postulates. Instead,
we adopt them as axiomatic, and from now on all mathematical aspects must be ruled by these
postulates.

Postulate 1. Every isolated quantum system has a Hilbert space associated (specifically, a
complex vector space with an inner product) known as the state space of the system. The system
is fully determined at any given moment by its state vector, which is a unit vector in the state
space.

The most basic quantum system is the qubit. This system has associated a 2-dimensional
state space with an orthonormal basis {|0⟩, |1⟩}, which we will reefer as computational state
basis. Therefore, we can express each state of the system as:

|ψ⟩ = α|0⟩+ β|1⟩, α, β ∈ C such that |α|2 + |β|2 = 1,

where the last property guarantees that our vector is unitary. The qubit is the fundamental
quantum system for the development of quantum codes.

Postulate 2. The evolution of a closed quantum system is governed by a unitary transformation.
Specifically, the state of the system |ψ0⟩ at time t0 is related to the state of the same system
|ψ1⟩ at time t1 through a unitary matrix U , which only depends on the times t0 and t1 in the
following way:

|ψ1⟩ = U |ψ0⟩.

Throughout this discussion, we consider only closed quantum systems. However, if we at-
tempt to observe the system, our interaction with it causes it to stop being a closed system.
Therefore, its evolution is no longer unitary over time. The following postulate describes what
happens when measurements are performed on a closed quantum system.

Postulate 3. A quantum measurement is characterised by a set of operators {Mm}, referred
to as measurement operators, which act on the system. The index m corresponds to each of the
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possible outcomes of the measurement (already fixed beforehand). If the state of the system is
|ψ⟩ , the probability of obtaining the result m is given by:

p(m) = ⟨ψ|M∗
mMm |ψ⟩

And the system collapses into the state:

Mm|ψ⟩√
⟨ψ|M∗

mMm |ψ⟩

To be a valid measure,the measurement operators must verify the ”completeness condition” to
ensure that the probabilities of all possible outcomes sum to one. Mathematically, this is ex-
pressed as: ∑

m

⟨ψ|M∗
mMm |ψ⟩ =

∑

m

p(m) = 1

Theorem 3. Let {|ψi⟩}i=1,...,n be a set of states in a quantum system. For each j = 1, . . . , n
it is possible to distinguish the state |ψj⟩ of the system through a quantum measurement if and
only if the states in the set are orthonormal.

Consequently, we can choose other bases composed of orthonormal states on which mea-
surements can also be realised. An example of this fact is that we could make measurements
through the basis {|+⟩, |−⟩} if it is convenient. Where:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ and |−⟩ = 1√

2
|0⟩ − 1√

2
|1⟩

Yet we only described how it works a single qubit. To establish how to concatenate several
qubits, as in classical computation, we need another postulate.

Postulate 4. The state space of a composite quantum system is the tensor product of the state
spaces of the individual subsystems that constitute it.

Therefore, a system composed by n qubits, has associated a Hilbert space of dimension 2n.
Hence, if |ψ⟩ is the state of that system we will write:

|ψ⟩ =
∑

i∈Fn
2

ai|i1⟩ ⊗ · · · ⊗ |in⟩ =
∑

i∈Fn
2

ai|i1 . . . in⟩,

where i = (i1 . . . in) ∈ Fn2 , and
∑

i∈Fn
2
|ai|2 = 1, to ensure the unitary condition.

1.5.2 Quantum logic gates and basic circuits

Quantum gates are just linear unitary transformations acting upon the state space of a quantum
system. The linearity of these transformations is essential to preserve the physical characteristics
of the system. Now, we show an example of how we are going to represent these gates. As we
mentioned earlier, they are just a linear unitary transformation that maps our state |ψ0⟩ at time
t0 to our new state |ψ1⟩ at time t1. In the figure below, the movement of our state over time is
represented by a wire, then a unitary transformation is applied, which transforms it, and then
the qubit continues to move.

For each qubit, there are several matrices that can modify its state, not like in classical
computation, where the only nontrivial gate for a bit is the NOT gate (which swaps 0 to 1 and
1 to 0). Another important consequence of being unitary is that all quantum transformations
are reversible in the sense that the inverse of any quantum gate can be easily obtained. In other
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|ψ0⟩ = a0|0⟩+ b0|1⟩ U |ψ1⟩ = U |ψ0⟩ = a1|0⟩+ b1|1⟩

Figure 1.2: Evolution of a quantum state over time.

words, when we concatenate gates and get some results we can follow the same path backwards
to give them an interpretation.

Due to the linearity of quantum gates, knowing the image of the basis states |0⟩ and |1⟩,
allows us to determine the image of any arbitrary qubit state. So based on this reasoning, we
will only present the most common gates for a single qubit. The X gate sends |0⟩ to |1⟩ and |1⟩
to |0⟩. The Y gate sends |0⟩ to |1⟩ and |1⟩ to −|0⟩. The Z gate sends |0⟩ to |0⟩ and |1⟩ to −|1⟩.
And finally the H gate sends |0⟩ to |+⟩ and |1⟩ to |−⟩. In terms of its unitary matrices, they
may be represented as:

X = |1⟩⟨0|+ |0⟩⟨1| =
[
0 1
1 0

]
= σx,

Y = |1⟩⟨0| − |0⟩⟨1| =
[
0 −1
1 0

]
= −iσy,

Z = |0⟩⟨0| − |1⟩⟨1| =
[
1 0
0 −1

]
= σz,

H = |+⟩⟨0|+ |−⟩⟨1| = 1√
2

[
1 1
1 −1

]
,

where {σx, σy, σz} are the Pauli matrices.

So far we have only talked about logic gates acting on a single qubit. To generalise this
to more than a single qubit we need to talk about circuits. A circuit is a model for quantum
computing in which a computation is a sequence of logic gates. We read them from left to right.
Each line represents a wire in the circuit, i.e., the evolution of a qubit (which is not necessarily a
physical wire, it may be the movement of a photon in the space). By default, we assume that the
input state of the circuit is a state of the computational basis. Quantum and classical circuits
share most of their properties. However, quantum circuits must fulfill some specific properties
in order not to violate quantum postulates. We will not delve deeper, since the circuits we are
going to use will satisfy these requirements. The Figure 1.2 is an example of a circuit acting
upon one qubit.

The most basic and important circuit is known as the CNOT gate, which acts upon two
qubits. We understand it as a generalization of the classical XOR gate. It works as follows: the
first qubit, control qubit, indicates whether the second qubit, target qubit, should be modified.
That is, if the control qubit is in the state |0⟩ the CNOT leaves the state of the target qubit
unchanged. Otherwise, the CNOT gate flips the state of the target qubit (i.e., |0⟩ 7→ |1⟩ and
|1⟩ 7→ |0⟩). This logic gate is key in the understanding of the most basics quantum correcting
codes, as we will soon see. Figure 1.3 shows the CNOT gate and a circuit example.

In the second circuit in the figure we implemented a measurement of a qubit α|0⟩+β|1⟩. The
measurement is depicted as a meter that gives as outcome a classical bit 0 or 1 with probability
|α|2 or |β|2 respectively. These classical bits are manipulated via a classical wire represented as
a double wire.
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|a⟩ |a⟩

|b⟩ |b+ a⟩
(a) CNOT gate, where the sum is modulo 2 and
a, b are 0 or 1.

0/1

|1⟩ H |−⟩

|0⟩ X

(b) Example of a circuit where several circuit
elements are implemented.

Figure 1.3: Some circuits examples.

1.5.3 Non-cloning Theorem

On the basis of the above, the reader might propose an approach to measure a quantum system
without altering it: replicating the quantum system and performing measurements on the copies.
Through statistical analysis of the results, the original state could theoretically be determined.
This technique is widely used in classical computation, where copying bits a common practice,
and even more in classical correcting codes. In classical computation, it is possible to copy bits
using an XOR gate by introducing a new bit in state 0 and performing a modulo 2 sum with the
bit to be copied. However, from the perspective of quantum information, it is fundamentally
impossible to copy any qubit using unitary transformations as the following theorem states.

Theorem 4 (Non-cloning theorem). An unknown quantum system cannot be copied using uni-
tary transformations.

A very important remark is that this theorem tells us that in general we are not able to copy
as shown in the proof, but for certain values of α, β we can do it.

1.6 Quantum error-correcting codes

As we have said, the aim of coding theory is to provide a way of protecting information from
errors made when sending it through a noisy channel. In the case of quantum information,
prevent them from quantum errors acting upon qubits corrupting the information.

Therefore, following the line gone with classical codes we could try to construct a code by
repetition. In other words, add redundancy to the qubits we want to send so that we detect and
recover the original information.

Unfortunately, this strategy would violate the non-cloning principle (Theorem 4). Indeed, if
|ψ⟩ is a quantum state, then we cannot directly clone it via a map such that

|ψ⟩ 7→ |ψψψ⟩

to obtain a 3-quantum state. However, we can achieve the same result using a different approach.
Right before tackle this problem, we must keep in mind the most major differences between

classical and quantum codes:
1. No cloning: Theorem 4 states that we cannot clone an arbitrary quantum state. Further-

more, even if we could, we would not be able to measure or compare the states after the
sending.

2. A single qubit can be subject to an infinite type of errors.
3. Performing measurements modify their state, so we cannot observe the states to detect

errors.
Fortunately, all these problems are solvable and we will be able to construct a theory of

quantum codes capable of addressing these issues. We will first look at simple quantum codes.
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1.6.1 Repetition code for qubits

In the classical case, the binary repetition code of length code 3 is obtained by encoding the
elements of the alphabet F2 = {0, 1} as follows:

0 7→ 000 and 1 7→ 111.

This encoding allows us to correct up to one error by majority decision (see Theorem 1). In
other words, we decode:

000, 001, 010, 100 as 0

and

111, 011, 110, 101, as 1.

The same procedure for constructing a quantum repetition code cannot be performed due to
the non-cloning theorem. However, we apply a different strategy that leads to the same result.

Suppose |ψ⟩ = α|0⟩ + β|1⟩ is a quantum state. We wish to add redudancy to it knowing
that we cannot clone an arbitrary state. Thus, we take two auxiliary qubits in state |0⟩ and add
them to the two single states. That is,

|ψ⟩|00⟩ = (α|0⟩+ β|1⟩)|00⟩ = α|000⟩+ β|100⟩.

Now we simply encode by applying a CNOT gate twice as shown the circuit in Figure 1.4.

Note that no-cloning theorem has not been violated since we have not cloned any qubit. We
have just modified a 3-quantum state. Each qubit of the 3-quantum state is called a physical
qubit.

α |0⟩+ β |1⟩

α |000⟩+ β |111⟩|0⟩

|0⟩

Figure 1.4: Encoding of a quantum state of a qubit.

In fact, the above encoding is an isometric embedding of a 2-dimensional Hilbert space H
with basis {|0⟩, |1⟩} in the subspace spanned by {|000⟩, |111⟩} of a Hilbert space H′ of dimension
8. The isometry is precisely U = |000⟩⟨0|+ |111⟩⟨1| : H → H′ given by

U(α|0⟩+ β|1⟩) = α|000⟩+ β|111⟩, for all α, β ∈ C.

The picture in Figure 1.5 represents the action of U.

1.6.2 Bit-flip code

Suppose we want to send a qubit through a channel that transforms a state |ψ⟩ into a state
X|ψ⟩ with probability p, and leaves it untouched with probability 1 − p. That is, it exchanges
the amplitudes of |ψ⟩. This channel is called the bit-flip channel. Now we construct the bit-flip
code which protects qubits against the noise from this channel.

Now we take any state |ψ⟩ = α|0⟩ + β|1⟩ and using the previous procedure to encode it so
that the bit-flip code is

C = {α|000⟩+ β|111⟩ | α, β ∈ C and |α|2 + |β|2 = 1}.
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|0⟩
|1⟩

H Is
om
et
ry |000⟩

|111⟩
|100⟩
|011⟩

|001⟩
|110⟩

|010⟩
|101⟩

E1

E3
E2

b

0

1

a
0 1H′

Figure 1.5: Representation of the encoding.

Once the information has been encoded, it is sent through a bit-flip channel that produces bit-
flip errors in each physical qubit independently with probability p. The possible states received
will depend on the physical qubits on which an error occurs. For instance, we can receive the
state with error α|100⟩+ β|011⟩ with probability p(1− p)2. The circuit in Figure 1.6 details the
encoding, error detection, and error correction.

encoding

detection and correction

decoding

α |0⟩+ β |1⟩

Error Ei

Xa(1−b) α |0⟩+ β |1⟩

|0⟩ Xab |0⟩

|0⟩ X(1−a)b |0⟩

|0⟩ a

|0⟩ b

Figure 1.6: Circuit representing the encoding of a qubit bit-flip code, the sending of the encoded
word through a bit-flip channel and the detection and correction of the error by the receiver of
the message.

In order to recover the original information, we approach it in several ways. One way is to
carry out a quantum measurement of the projections:

P0 = |000⟩⟨000|+ |111⟩⟨111| no error

P1 = |100⟩⟨100|+ |011⟩⟨011| bit-flip on qubit one

P2 = |010⟩⟨010|+ |101⟩⟨101| bit-flip on qubit two

P3 = |001⟩⟨001|+ |110⟩⟨110| bit-flip on qubit three

Note that this family of projections {P0, P1, P2, P3} satisfies the conditions of postulate 3.

For i = 1, 2, 3 suppose that a one bit-flip error Ei occurs and the state after this error is
|ψ⟩. Then the result of these measurements will be i with probability ⟨ψ|Pi|ψ⟩ = 1. Now, since
Pi|ψ⟩ = |ψ⟩ (we are assuming the error Ei has occurred), the state is left unchanged. If no
error occurs, then we will obtain 0 with probability 1 and the codeword will remain unchanged.
Thus, in total, we will have four possible outcomes (error syndromes) which will specify the
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position on which the error occurs. Then we simply correct by applying the bit-flip gate to the
corresponding position and recover the codeword (recall that X2 = I).

For example, suppose that the state |ψ⟩ = α|010⟩ + β|101⟩ is received. Then ⟨ψ|P2|ψ⟩ = 1
with syndrome 2 and P2|ψ⟩ = |ψ⟩. Thus, we recover the codeword by applying E2 = I ⊗X ⊗ I.

This process can be better understood by noting that we are projecting orthogonally the
received state onto the four different Hilbert subspaces determined by the four distinct types of
error. Once the subspace is detected, we can apply the error to bring the received state back
into the code subspace (see again Figure 1.5).

Another and better approach to error detection and correction is the one implemented in
the circuit in Figure 1.6. It works as follows:

We take two auxiliary qubits as we do when encoding and apply to each of them two CNOT
gates. The first two CNOT gates check the parity of the first two physical qubits, and the next
two check the parity of the last two physical qubits. Then we measure thess auxiliary qubits
in the computational basis and obtain 0 or 1 in each case. These values form a pair ab which
is the error syndrome. Thus, we will apply the corresponding correction according to the error
syndrome. The following table lists the possible states received, the corresponding syndromes
and their corrections:

State Syndrome ab Correction Ei

α|000⟩+ β|111⟩ 00 I ⊗ I ⊗ I
α|100⟩+ β|011⟩ 10 X ⊗ I ⊗ I
α|010⟩+ β|101⟩ 11 I ⊗X ⊗ I
α|001⟩+ β|110⟩ 01 I ⊗ I ⊗X

Figure 1.7: Received states, syndromes and corrections.

If we go back to Figure 1.5 we see that the representation of the associated Hilbert space is
divided into four regions. This division is made in terms of the parity of the first two physical
qubits followed by the parity of the two second ones. So, in the end, what we are doing is, again,
detecting to which subspace the received state belongs.

1.6.3 Phase-flip code

This code will allow us to treat a state that has been altered by a phase-flip, i.e., an unwanted
Z action on the state.

Suppose we want to send a qubit through a channel that transforms a state |ψ⟩ = α|0⟩+β|1⟩
into a state Z|ψ⟩ = α|0⟩ − β|1⟩ with probability p, and leaves it unchanged with probability
1− p. That is, it performs a phase change. This channel is called the phase-flip channel. Note
that there is no equivalent classical channel to this, since classical channels do not possess any
equivalent phase property.

At first glance, we would suspect to have to come up with a different strategy to construct
the phase-flip code. The code that protects qubits against the noise from the phase-flip channel.
It turns out that we do not need to work much. Indeed, note that phase-flip gate Z is related
to bit-flip gate X through Hadamard gate H since X = HZH. Furthermore, observe that the
plus and minus states, i.e.

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩),

are eigenvectors of Z as Z|±⟩ = |∓⟩. In short, the Z gate acts upon plus and minus states as the
X gate acts upon computational basis states. Thus, it is sufficient to implement the Hadamard
gate in the bit-flip code circuit to make it suitable to correct phase-flip errors:
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encoding

detection and correction

decoding

α |0⟩+ β |1⟩ H

Error Ei

H Xa(1−b) α |0⟩+ β |1⟩

|0⟩ H H Xab |0⟩

|0⟩ H H X(1−a)b |0⟩

|0⟩ a

|0⟩ b

Figure 1.8: Circuit representing the phase-flip code process.

The encoded state that enters the transmission area (where errors can occur) is now α|++
+⟩+ β|− − −⟩ due to the action of the Hadamard gate. Note that errors are transformed into
orthogonal, and thus detectable states.

When it comes to error detection and correction is exactly the same as for the bit-flip code,
since after the error we bring the plus and minus states back to the computational basis states.

1.6.4 Shor code

So far we have been able to find two different codes in order to correct bit-flip and phase-flip
errors. The two codes are mutually exclusive, i.e. one can correct bit-flip errors but not phase-
flip, and vice versa. Nonetheless, the Shor code is a clever way to implement both codes at
the same time and be able to correct both bit-flip and phase-flip. This can be achieved by
combining, or more precisely, concatenating bit-flip and phase-flip as follows:

First, we encode our state with the phase-flip code

α|0⟩+ β|1⟩ 7→ α|+++⟩+ β|− − −⟩

and then encode each physical qubit with the bit-flip code. In other words, we apply:

|+⟩ = 1√
2
(|0⟩+ |1⟩) 7→ 1√

2
(|000⟩+ |111⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩) 7→ 1√

2
(|000⟩ − |111⟩)

Therefore, this results in:

α|0⟩+ β|1⟩ 7→ α
1

2
√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

+β
1

2
√
2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

This encoding defines the Shor code which was proposed by Peter Shor in 1995 (see [11]).
Now, suppose we send the encoded state through a channel that produces bit-flip, phase-flip
and both at the same time on a single physical qubit. Then, in order to detect and correct a
bit-flip error we simply study each block of three physical qubits separately. Indeed, if a bit-flip
occurs in the first three physical qubits block then we apply the same strategy used for bit-flip
code (this strategy can be understood as taking majority decision). Similarly for the rest of the
blocks.

On the other hand, if a phase-flip occurs on any single qubit then it switches the sign of the
entire block. For instance, if a phase-flip occurs on the first, second or third physical qubit, that
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is, on the first block, then |000⟩ + |111⟩ 7→ |000⟩ − |111⟩ and vice versa. Thus, it flips the sign
of the entire block. Therefore, note that the effect of a single phase-flip error on that space is
the same regardless of in which of the three qubits it has occurred. This type of code where the
location of the error is unknown is called degenerated code. Therefore, to correct a phase-flip
error, we just take majority decision on the signs of the blocks. For example, if a phase-flip
occurs in the sixth qubit then the α term would be

1

2
√
2
(|000⟩+ |111⟩)(|000⟩ − |111⟩)(|000⟩+ |111⟩)

Thus, by comparing the signs of the first two blocks and those of the last two, we detect the
error in the second block and successfully correct it.

Now, when it comes to Y errors note that Y = iXZ. Therefore, since any global phase is
irrelevant, any Y error is merely an X and Z error occurring on the same qubit. That is the
reason why we have omitted the Y error so far. Thus, we detect and correct in two steps: first
the bit-flip error and then the phase-flip error. This works because the two decisions we make
are independent of each other.

We stated before that Shor’s code can correct any type of error, including those not given by
a unitary matrix. We will not go into details since this is not the goal of this section although
we give the idea behind this result. Indeed, any matrix U ∈ M2(C) can be written as a linear
combination of the Pauli matrices and the identity matrix I2. Thus, we can specify the action of
U upon the k-th qubit and making the appropriate measurements we collapse, or more precisely
project, the state (with error) onto the Pauli error and then use the strategies we have shown
to detect and correct it (see all the details in [6] p. 60).

1.6.5 Some thoughts on general theory

The codes we have worked with so far provide the ideas underpinning the general theory of
quantum error-correcting codes. The idea is the same: encode a quantum state via a unitary
map into a state inside a quantum error correcting code, which is just a subspace of a larger
Hilbert space. This subspace will have an associated projection map. For example, it is easy to
check that the bit-flip code has the projection P = |000⟩⟨000|+|111⟩⟨111| (see again the quantum
measurements for bit-flip code) and the phase-flip code P ′ = |+++⟩⟨+++|+|−−−⟩⟨−−−|. Now,
suppose that an encoded state undergoes an error, then, we perform a syndrome measurement
so as to identify the type of error. Once identified the error syndrome, perform the correction
to bring the state back to the code (see again Figure 1.5).

H

H′

C
C1

C2
C3

Enco
ding

E0 E1

E2 E3

Figure 1.9: The original subspace is embedded (encoded) isometrically in a subspace of a larger
Hilbert space and the errors (isometries) can shift the code to another orthogonal subspace.
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The codes shall be designed in such a way that error syndromes can be distinguished by
syndrome measurements. Thus, errors should send the code subspace into an orthogonal one.
Moreover, these errors must preserve the properties of the subspace. In short, the error subspace
should be an orthogonal copy of the code space. In this way, orthogonal words will be sent into
orthogonal states so that we successfully recover the codeword after the error correction. Figure
1.9 gives an outline of the framework we wish to work with.

In general terms, the actions of the isometry and the errors can be summarised in isometries
that map the original Hilbert space in subspaces of the larger Hilbert space. These isometries will
preserve all the desired properties mentioned above. The following picture shows two situations
that can occur:

H

H′

H1

H2

H3

H4

U1

U2

U3

U4

(a) Good encoding, the subspaces do
not overlap.

H

H′

H1

H2

H3

H4

U1

U2

U3

U4

(b) Bad encoding, the subspaces do
overlap

Figure 1.10: Graphical overview of the encoding and error process.

Since the action of isometry and errors is summarised in these four isometries, we then need
the subspaces not to overlap in order to have the error codeword successfully recovered. Thus,
we want the first situation to occur.

1.6.6 CSS codes

After this brief introduction to the first and most basic error-correcting quantum codes, it is
natural to ask whether there is any relationship between classical codes and quantum codes.
The answer is yes, as shown by the type of quantum codes defined below. These codes are called
CSS by Calderbank, Steane and the aforementioned Shor (see [3] and [12]). They are the first
family of codes that, like Shor’s code, are capable of correcting any kind of error. In fact, this
family happens to be part of a larger family of codes. The so-called stabiliser codes, which we
will not delve deeper here.

Since a quantum code is after all a vector space, we can specify the length and dimension just
as we do with linear codes. We write Jn, kKq to denote the length and dimension qk of a quantum-
error correcting code, that is, a qk-dimensional subspace of the Hilbert space H = (Cq)⊗n ∼= Cqn .
We write double brackets to emphasise that this is a quantum code.

Theorem 5. Suppose that C1, C2 ⊆ Fn2 are two [n, k1], [n, k2]-binary linear codes, respectively,
such that C⊥2 ⊆ C1. Let u ∈ C1 and define the quantum state

|u+ C⊥2 ⟩ :=
1√
|C⊥2 |

∑

v∈C⊥
2

|u+ v⟩, (1.1)

where the sum is the usual coordinate-wise addition in Fn2 . Then, the code Q spanned by {|u +
C⊥2 ⟩ |u ∈ C1} is a Jn, k1 + k2 − nK-quantum error-correcting code.
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XII Congreso del Máster en Investigación Matemática

This proof can be found in [3], [12] and [9].

Definition 9. We call CSS code, and write CSS(C1, C2), to the Jn, k1 + k2− nK-quantum error-
correcting code Q from Theorem 5.

To conclude, let us look at an example of CSS code, the Steane code. It is the best known
example of this type of code and is built using a classic Hamming code (a specific linear code).

Example 4 (Steane code). Suppose that C is a [7, 4]-binary Hamming binary code and define
C1 = C and C⊥2 = C⊥. It is easy to check that C⊥2 ⊆ C1. Thus, since C1 and C2 are [7, 4]-binary
linear codes, from Theorem 5 it follows that CSS(C1, C2) is a J7, 1K-quantum CSS code. Now,
since |C⊥2 | = 23 = 8 it is also easy to check that:

C⊥2 = {0000000, 0001111, 0110011, 1010101,
0111100, 1011010, 1100110, 1101001}

On the other hand, we have that the dimension is |C1|
|C⊥

2 | = 2. Thus, since the null state (in this

case 0 = 0000000) is always part of the vector space, is sufficient to take u ∈ C1 such that
u /∈ C⊥2 . Taking u ∈ C1 to be 1 = 1111111, the Steane code is:

CSS(C1, C2) = {α|0+ C⊥2 ⟩+ β|1+ C⊥2 ⟩ | α, β ∈ C and |α|2 + |β|2 = 1},

where,

|0+ C⊥2 ⟩ =
1

2
√
2
(|0000000⟩+ |0001111⟩+ |0110011⟩+ |1010101⟩

+|0111100⟩+ |1011010⟩+ |1100110⟩+ |1101001⟩),

|1+ C⊥2 ⟩ =
1

2
√
2
(|1111111⟩+ |1110000⟩+ |1001100⟩+ |0101010⟩

+|1000011⟩+ |0100101⟩+ |0011001⟩+ |0010110⟩).

This last example sheds light on the usefulness of classical codes in quantum codes. More
specifically, it leads us to find classical codes with the right properties that provide new quantum
codes.

1.7 Conclusions

In this work, we have presented an introduction to the fundamental concepts of quantum error-
correcting codes. Beginning with classical coding theory, we present the necessary mathematical
foundations to understand the transition from classical to quantum error correction. We em-
phasized how the peculiarities of quantum systems necessitate new approaches compared to
classical strategies.

We explored basic quantum codes, including bit-flip and phase-flip codes, and illustrated how
the Shor code combines techniques to correct both bit-flip and phase-flip errors simultaneously.
Moreover, we highlighted the importance of CSS codes, demonstrating how classical linear codes
can be useful to construct quantum codes capable of protecting information against arbitrary
quantum noise.

Ultimately, the theory of quantum error correction not only ensures the stability and reliabil-
ity of quantum information processing but also is fundamental for the development of practical
quantum technologies. Further advances in this field will be crucial for realizing more faithful
quantum computers.
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1.1 Introduction

It is well-known that affine algebraic sets need not be a submanifold of the ambient space. The
points where they fail to be a submanifold are called singular points. The systematic study of
singularities began in the 1950s with the pioneering works of H. Whitney, R. Thom, J. Mather,
and others. One of the earliest significant results regarding the singularities of affine algebraic
sets is due to H. Whitney (see [1]). It states that every real (or complex) affine algebraic set
is the disjoint union of finitely many real (or complex) analytic submanifolds of the ambient
space, each having finitely many topological components. So, although we may not have a
submanifold, we can divide our space into finitely many disjoint connected submanifolds. This is
the simplest way of stratifying a singular space. Stratification is a simple but powerful technique
for decomposing singular spaces into smaller but smooth pieces called strata. However, to make
further progress in Singularity Theory, it became necessary to understand how these pieces fit
together. This is where Whitney’s Stratifications come into play. Whitney’s conditions were
introduced to address this issue, and they provided techniques, such as controlled vector fields,
that allowed us to extend results from manifolds to Whitney’s stratified spaces. For an overview
of Stratification Theory, check [4] and for learning the controlled vector fields technique we refer
the reader to [3].

In this work, we revisit Whitney’s proof of this elementary but powerful result. This work
is divided in three parts. Namely,

• First we define affine algebraic sets and study their basic properties. Next, we introduce
the Zariski topology and prove that the affine space, endowed with this topology, is a
noetherian topological space. This fact turns out to be crucial in Whitney’s proof.

• In the second part, we revisit Whitney’s Theorem. We will follow Whitney’s proof, using
slightly different arguments. For example, for the finiteness of the topological components,
we prefer to use Morse Theory, as Milnor did in [2].

• In the final part of this work, we provide some applications to show that this simple
technique conceals a powerful tool for dealing with singularities.
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1.2 Main Results

1.2.1 Fundamental aspects of algebraic geometry

Let K be a fixed field. We define the affine n-space over K

AnK = An := Kn = K
n times︷ ︸︸ ︷
× · · ·×K.

Let A := K[x1, . . . , xn] be the polynomial ring in n variables over K. The elements of A can
be interpreted as functions f : An → K by substitution. Thus, if f ∈ A, we can talk about its
set of zeros

V (f) := {P ∈ An : f(P ) = 0}.
More generally, if F ⊂ A, we can talk about its common zero set

V (F ) := {P ∈ An : f(P ) = 0, ∀f ∈ F}.

Notice that if F ⊂ G ⊂ A, then V (G) ⊂ V (F ), i.e., V is inclusion-reversing.

Definition 1. A subset Y ⊂ An is called an affine algebraic set if there exists F ⊂ A such that
Y = V (F ).

Apparently, affine algebraic sets can be the common zero set of too many polynomials. The
first thing we are going to prove is that there is always a suitable finite choice of the family F.
In fact, this is a direct consequence of the Hilbert’s basis theorem.

Corollary 1. Every affine algebraic set is the common zero set of finitely many polynomials.

Let S ⊂ An. We define the ideal

I(S) := {f ∈ A : S ⊂ V (f)}.

Notice that I is inclusion-reversing.
In order to define the Zariski topology on the affine space, the following proposition is needed.

Proposition 1. Affine algebraic sets are closed to finite union and arbitrary intersections.
Additionally, the emptyset and the whole space are affine algebraic sets.

Definition 2. We define the Zariski topology on An by taking as open sets the complementary
of affine algebraic sets. By the preceding proposition, this is a well-defined topology on An, whose
closed sets are exactly the affine algebraic sets.

It is easy to see that, if K = R or K = C, then Zariski open sets are open in the usual
topology of the affine space.

Now we aim to prove that the affine space An with the Zariski topology is a Noetherian
space, i.e., that for every descendent chain of algebraic sets C1 ⊇ C2 ⊇ · · · , there is some n0 ∈ N
such that Cn = Cn0 , ∀n ≥ n0. This will follow from the following proposition.

Proposition 2. Let S ⊂ An. Then
V (I(S)) = S̄.

Proof. By definition of the Zariski topology, V (I(S)) is closed. Adding this to the trivial in-
clusion S ⊂ V (I(S)), we get S̄ ⊂ V (I(S)). Conversely, write S̄ = V (J) for some ideal J ⊂ A.
Therefore S ⊂ V (J). Applying the inclusion-reversing property of I, we obtain I(V (J)) ⊂ I(S).
So, from the trivial inclusion J ⊂ I(V (J)), it follows that J ⊂ I(S). Finally, using the inclusion-
reversing property of V , we get the desired inclusion V (I(S)) ⊂ V (J) = S̄.
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Theorem 1. The affine space An with the Zariski topology is a Noetherian space.

Proof. Indeed. Every descendant succession of algebraic sets

C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ · · ·

leads to an ascendant succession of ideals in A

I(C1) ⊆ I(C2) ⊆ · · · ⊆ I(Cn) ⊆ · · ·

Since A is Noetherian, there is some n0 ∈ N such that I(Cn) = I(Cn0), ∀n ≥ n0. Applying
Proposition 2, it follows that

Cn = Cn = V (I(Cn)) = V (I(Cn0)) = Cn0 = Cn0 , ∀n ≥ n0.

1.2.2 Whitney’s theorem

In what follows K = R or K = C. Our main objective in this work is to review Whitney’s proof
of the following,

Theorem 2 (Whitney’s Theorem). Let E ⊂ Kn be an affine algebraic set. Then

E =
l⊔

j=1

Mj ,

where Mj is a connected K-analytic submanifold of Kn for every j = 1, . . . , l.

Since the proof is very extense, we will divide it in several lemmas. But first, let us define
the singular set of an affine algebraic set.

Let E ⊂ Kn be an affine algebraic set. For each x ∈ E, we define

ρ(x) := dimK (⟨{dfx : f ∈ I(E)}⟩K) .

First we observe that this dimension is always finite. Indeed. From the relation d(fg)x =
f(x)dgx + g(x)dfx we deduce that

d(fg)x = g(x)dfx, ∀f ∈ I(E), g ∈ A.

Suppose I(E) = ⟨f1, . . . , fr⟩A. Then

ρ(x) = dimK (⟨d(f1)x, . . . , d(fr)x⟩K) ≤ r <∞, ∀x ∈ E.

This implies that exists
ρ0 := max

x∈E
ρ(x) ≤ r <∞.

The singular points of E are the points x ∈ E such that ρ(x) < ρ0. The set of singular points
of E will be denoted by SingE. Notice that

x ∈ SingE ←→ dimK(⟨d(f1)x, . . . , d(fr)x⟩K) < ρ0

←→ rank

(
∂fi
∂xj

(x)

)

1≤i≤r
1≤j≤n

< ρ0.
(1.1)

In particular, equation (1.1) shows that SingE is an affine algebraic set. The following lemma
is probably the most important one. This is why we decided to include here its proof.
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Lemma 1. E − SingE is a K-analytic submanifold of Kn of dimension n− ρ0.

Proof. It suffices to show that each point x0 ∈ E − SingE has an open neighborhood (nbhd.)
V in Kn such that V ∩ (E − SingE) is an analytic submanifold of Kn. Let x0 ∈ E − SingE. We
can suppose without loss of generality that x0 = 0 and that d(f1)0, . . . , d(fρ0)0 are K-linearly
independent. Thus, by (1.1), we have

rank

(
∂fi
∂xj

(0)

)

1≤i≤ρ0
1≤j≤n

= ρ0.

So some minor of order ρ0 does not vanish. With a coordinates permutation, we can suppose
that this minor is determined by the first ρ0 columns, i.e.,

∂(f1, . . . , fr)

∂(x1, . . . , xρ0)
(0) ̸= 0.

Consider the map germ

ϕ : (Kn, 0) −→ (Kn, 0)
x 7−→ (f1(x), . . . , fρ0(x), xρ0+1, . . . , xn)

.

By construction, the jacobian of ϕ does not vanish at the origin. Apply the Inverse Function
Mapping Theorem for analytic germs (notice that the coordinate functions are polynomials) and
then choose a good representative of the germ to get an analytic diffeomorphism

ϕ : V −→ Inε ,

where V is an open neighborhood of the origin of Kn and Inε :=] − ε/2, ε/2[n for some ε > 0.
Define now

V0 := {x ∈ V : ϕi(x) = 0, ∀i = 1, . . . , ρ0} = ϕ−1({0} × In−ρ0ε ).

Since ϕ is an analytic diffeomorphism and {0} × In−ρ0ε is a K-analytic submanifold of Kn of
dimension n − ρ0, we deduce that V0 is a K-analytic submanifold of Kn of dimension n − ρ0.
Now, from the fact that ϕ is a diffeomorphism, it follows that d(f1)x, . . . , d(fρ0)x are K-linearly
independent for every x ∈ V . Consequently, V ∩ (E − SingE) = V ∩ E. So, it now suffices to
prove that V0 = V ∩E. The inclusion V ∩E ⊆ V0 is obvious and, since V0 ⊆ V by definition, it
only remains to show that V0 ⊆ E.

For this purpose, let C w
(Kn,0) be the K-algebra of analytic function germs of the form h :

(Kn, 0) −→ K. We claim that if F ∈ W := C w
(Kn,0)I(E) (i.e., the ideal in C w

(Kn,0) generated by

I(E)), then ∂F/∂xj ∈W for each ρ0+1 ≤ j ≤ n. It is sufficient to show it for the case F ∈ I(E).
Fix ρ0 + 1 ≤ j ≤ n and set fl := xl if ρ0 + 1 ≤ j ≤ n and l ̸= j, fj := F and f = (f1, . . . , fn).
Since F (0) = 0, there is an open nbhd. U ⊂ V of the origin such that F (U) ⊂]−ε/2, ε/2[. Thus

ϕ−1 ◦ f(x) = (x1, . . . , xρ0 , xρ0 + 1, . . . , F (x), . . . , xn), ∀x ∈ U.

On the one hand we have

J(ϕ−1 ◦ f)(x) = ∂F

∂xj
(x), ∀x ∈ U. (1.2)

On the other one, by applying the Chain Rule we obtain

J(ϕ−1 ◦ f)(x) = (J(ϕ−1) ◦ f)(x)Jf(x), ∀x ∈ U. (1.3)
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Since J(ϕ−1) ◦ f is analytic in U , we have J(ϕ−1) ◦ f ∈ C w
(Kn,0). Moreover, since f1, . . . , fρ0 , F ∈

I(E), it follows that

Jf(x) =
∂(f1, . . . , fρ0 , F )

∂(x1, . . . , xρ0 , xj)
(x) = 0, ∀x ∈ E,

because otherwise we would have points in E with rank greater than ρ0. In particular

∂F

∂xj

(1.2)
= J(ϕ−1 ◦ f) (1.3)

= (J(ϕ−1) ◦ f)Jf ∈W.

Then, by induction one gets that

(∂αρ0+1/∂x
αρ0+1

ρ0+1 ) · · · (∂αn/∂xαn
n )F ∈W, ∀α = (αρ0+1, . . . , αn), ∀F ∈W. (1.4)

In particular

(∂αρ0+1/∂x
αρ0+1

ρ0+1 ) · · · (∂αn/∂xαn
n )F (0) = 0, ∀α = (αρ0+1, . . . , αn), ∀F ∈W.

Since fi ∈ I(E) ⊂ W, for every i = 1, . . . , ρ0, it follows by analyticity and by (1.4) that
fi(x) ≡ fi(x1, . . . , xρ0). Thus,

ϕ(u; v) = (f1(u), . . . , fρ0(u); v), ∀(u; v) ∈ V, u ∈ Kρ0 , v ∈ Kn−ρ0 .

Consequently,

ϕ−1(x; y) = ((ϕ−1)1(x), . . . , (ϕ
−1)ρ0(x); y), ∀(x; y) ∈ Inε , x ∈ Kρ0 , y ∈ Kn−ρ0 .

From here it follows that, for every i = 1, . . . , ρ0,

(∂αρ0+1/∂y
αρ0+1

ρ0+1 ) · · · (∂αn/∂yαn
n )(ϕ−1)i(0) = 0, ∀α = (αρ0+1, . . . , αn). (1.5)

We claim now that (1.4) and (1.5) imply that

(∂αρ0+1/∂y
αρ0+1

ρ0+1 ) · · · (∂αn/∂yαn
n )(F ◦ ϕ−1)(0) = 0, ∀α = (αρ0+1, . . . , αn), ∀F ∈W. (1.6)

The argument is by induction over |α|. If |α| = 0 it is trivial. We will do it for |α| = 1, 2 to
show the reader the idea. Let ρ0 + 1 ≤ i, j ≤ n. Then

∂(F ◦ ϕ−1)

∂yi
(0) =

n∑

k=1

∂F

∂xk
(ϕ−1(0))

∂(ϕ−1)k
∂yi

(0)

=
n∑

k=1

∂F

∂xk
(0)

∂(ϕ−1)k
∂yi

(0)

(1.4)
=

ρ0∑

k=1

∂F

∂xk
(0)

∂(ϕ−1)k
∂yi

(0)

(1.5)
= 0.

∂2(F ◦ ϕ−1)

∂yj∂yi
(0) =

n∑

k=1

(
n∑

l=1

∂2F

∂xl∂xk
(0)

∂(ϕ−1)l
∂yi

(0)
∂(ϕ−1)k(0)

∂yj
(0)

)

+
∂F

∂xk
(0)

∂2(ϕ−1)k
∂yi∂yj

(0)

(1.5)
=

n∑

k=ρ0+1




n∑

l=ρ0+1

∂2F

∂xl∂xk
(0)

∂(ϕ−1)l
∂yi

(0)
∂(ϕ−1)k(0)

∂yj
(0)




+
∂F

∂xk
(0)

∂2(ϕ−1)k
∂yi∂yj

(0)

(1.4)
= 0.
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An induction argument proves (1.6). And thus, by analyticity, we have

F ◦ ϕ−1 |
({0}×In−ρ0

ε ,0)
= 0, ∀F ∈W.

Since ϕ−1 : ({0} × In−ρ0ε , 0) −→ (V0, 0) is a diffeomorphism germ, the previous relation is
equivalent to say that F |(V0,0)= 0, ∀F ∈ W . In particular, if F ∈ I(E) ⊂ W , since F
is analytic in the connected submanifold V0, it follows that F |V0= 0, i.e., F ∈ I(V0). So
I(E) ⊆ I(V0). To conclude, using that I is inclusion-reversing, we obtain the desired inclusion
V0 ⊆ E.

For the finiteness of the topological components we first reduce the problem to the real case
and then use Morse Theory arguments as Milnor did in [2]. This is just an easy lemma.

Lemma 2. Let F ⊂ Cn be a complex affine algebraic set. Then there is a homeomorphism
Φ : Cn −→ R2n such that Φ(F ) ⊆ R2n is a real affine algebraic set.

Three more lemmas are needed.

Lemma 3. Let E ⊂ Kn an affine algebraic set, f1, . . . , fr ∈ I(E), x0 ∈ E such that

det

(
∂fi
∂xj

(x0)

)

1≤i,j≤n
̸= 0.

Then E − {x0} is an affine algebraic set.

Proof. Suppose without loss of generality that x0 = 0. Since the polynomials f1, . . . , fn vanish
at the origin, we can choose polynomials gij such that

fi = x1gi1 + · · ·+ xngin, ∀1 ≤ i ≤ n.

On the one hand

∂fi
∂xj

(0) = gij(0) −→ det(gij(0))1≤i,j≤n = det

(
∂fi
∂xj

(0)

)

1≤i,j≤n
̸= 0.

And on the other one, the relation




0
...
0


 =




g11(0)
...

g1n(0)


x1 + · · ·+




g1n(0)
...

gnn(0)


xn,

implies by Cramer’s Rule that det(gij(x))1≤i,j≤n = 0, ∀x ∈ Kn − {0}. Therefore

E − {x0} = E ∩ (Kn − {x0}) = E ∩ V (det(gij)1≤i,j≤n).

Lemma 4. Let E ⊂ Kn be an affine algebraic set of isolated points. Then E is finite.

Proof. Since the points are isolated, E is a submanifold of Kn of dimension 0. Suppose that
E = V (f1, . . . , fr). Denote by ρ0 := max

x∈E
ρ(x). Then ρ0 = n. Otherwise, applying the Lemma

1, we would obtain that E − SingE is a submanifold of Kn of dimension n − ρ0 > 0. This
contradicts the fact that E − SingE ⊂ E and E is a submanifold of Kn of dimension 0. So
ρ0 = n. This means that there is at least one point x0 ∈ E such that ρ(x0) = n. This implies
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that some minor of the matrix (∂fi/∂xj(0)) does not vanish. We can suppose without loss of
generality that this minor is determined by the first n rows. This means that f1, . . . , fn ∈ I(E)
verify that

det

(
∂fi
∂xj

(x0)

)
̸= 0.

Applying the Lemma 4, we obtain that E − {x0} is an affine algebraic set. If E − {x0} is not
vacuous, we could reiterate the arguments. Since the affine space is Noetherian with the Zariski
topology, this process ends in a finite number of iterations, yelding to the conclusion.

The following lemma will give us the finiteness of the topological components.

Lemma 5. Let E,F ⊂ Kn be affine algebraic sets such that E−F is non-singular. Then E−F
has finitely many topological components.

Proof. Since we are studying a topological property, we can suppose K = R by Lemma 2.
Suppose that F = V (g1, . . . , gr). Then F = V (h), with h = g21 + · · ·+ g2r . Therefore, E −F is a
R-analytic submanifold of Rn wich is diffeomorphic to the graph of

φ : E − F −→ R

x 7−→ φ(x) =
1

h(x)
.

The graph Γ(φ) of φ is a smooth submanifold of Rn × R. Moreover, Γ(φ) is an affine algebraic
set given by (E ×R)∩ V (h(x)t− 1). In [5] it is proven that, for almost every point p ∈ Rn×R,
the function

rp : Γ(φ) −→ R
x 7−→ rp(x) = ∥x− p∥2 ,

is a Morse function. Let p ∈ Rn×R such that rp is a Morse function. The critical points of this
Morse function, Singrp, is an affine algebraic set of isolated points. Applying the Lemma 4, we
get that Singrp is finite. Now the topological components of E−F are in bijective correspondence
with the ones of Γ(φ). The last ones are closed in Rn × R, so they must determine a minimum
of the function rp, that has to be a point of Singrp. This completes the proof.

Finally, we are in conditions to prove Whitney’s Theorem.

Proof of 2. Let E ⊂ Kn be an affine algebraic set. Applying the Lemma 1 we get that

E = (E − SingE)
⊔

SingE,

where E − SingE is an analytic submanifold of Kn. Define E0 := E and Ei+1 := SingEi for all
i > 0. By induction

E =

(
N⊔

i=0

Ei − Ei+1

)⊔
EN+1,

with Ei−Ei+1 an analytic submanifold of Kn and EN+1 an affine algebraic set contained in EN
for every N ∈ N. We are constructing a descendent chain of Zariski closed sets

E = E0 ⊇ E1 ⊇ E2 ⊇ · · ·
Using the Noetherian property of the affine space with the Zariski topology, we know that there
is some natural N ∈ N such that EN+1 = Ei, ∀i ≥ N + 1. From the definition of EN+2, this
implies that Ej = ∅, ∀j ≥ N + 1. So we have that

E =
N⊔

i=1

Ei − Ei+1,
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where Ei − Ei+1 is a K-analytic submanifold of Kn. To conclude, apply the Lemma 5 to each
Ei − Ei+1, to obtain that each one has finitely many topological components.

1.2.3 Some applications

In this final section, we give some applications of Theorem 2.
We begin with an application that can be found in Milnor’s book [2]. This one is probably

the most well-known one. Here we give the same proof.

Corollary 2. Let f : Kn −→ K be a polynomial function. Then the set of critical values of f is
a finite set.

Proof. The set of critical points of f is an affine algebraic set given by

Singf := {x ∈ Kn : dfx = 0} = {x ∈ Kn :
∂f

∂xi
(x) = 0, ∀1 ≤ i ≤ n}.

Applying the Theorem 2, we can find connected K-analytic submanifolds of Kn, say {Mi}li=1,
such that

Singf =

l⊔

i=1

Mi.

The restriction f |Mi of f to each submanifold Mi is a K-analytic function that verifies

d(f |Mi)x = (dfx) |TxMi= 0 |TxMi= 0, ∀x ∈Mi.

Since Mi is connected, this implies that f |Mi= yi is a constant function. Therefore, the set of
critical values of f is finite:

f(Singf) = f

(
l⊔

i=1

Mi

)
=

l⋃

i=1

f(Mi) =

l⋃

i=1

{yi} = {y1, . . . , yl}.

The following application shows a deep difference between real and complex affine algebraic
sets.

Corollary 3. Let ∅ ̸= E ⊂ Cn be a complex affine algebraic set. If E is compact, then E is a
finite set.

Proof. Apply Whitney’s Theorem to get a finite partition {Mi}li=1 of E onto smooth1 subman-
ifolds of Cn. Since Mi is a smooth submanifold of Cn, we have that the inclusion i : Mi ↪→ Cn
is a smooth mapping.

Let us denote for each 1 ≤ j ≤ n, πj : Cn −→ C the projection onto the j-coordinate, i.e.,
πj(x) = xj . Consider the smooth application

πj ◦ i :Mi −→ C.

By the Open Mapping Theorem, (πj ◦ i)(Mi) is a point or an open subset of C. If it was an open
subset of C, we would have that (πj ◦ i)(Mi) is open and closed2 in C. By the connectedness of

1Notice that here in the complex case, smooth means holomorphic.
2Indeed. Mi is compact because it is a closed subset of the compact set E. Thus, its image under πj ◦ i is

compact and in particular a closed subset of C
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the complex plane this would imply that (πj ◦ i)(E) = C. However, being E compact, we know
that its image under πj ◦ i is compact. This is a contradiction. This contradiction shows that

(πj ◦ i)(Mi) = {y(i)j }, ∀1 ≤ j ≤ n, ∀1 ≤ i ≤ l.

From this we deduce that

Mi = i(Mi) = {y(i)}, where y(i) = (y
(i)
1 , . . . , y(i)n ), ∀1 ≤ i ≤ l.

And hence

E =
l⊔

i=1

Mi =
l⊔

i=1

{y(i)} = {y(1), . . . , y(l)}.

There are many more applications of Theorem 2. Another one can be found in the excellent
Milnor’s book [2], where he uses this kind of arguments to define the link of an isolated point
of an affine algebraic set.

As we said in the introduction, Theorem 2 is the simplest way of stratifying a singular space.
Stratification is a simple but powerful technique for decomposing singular spaces into smaller but
smooth pieces called strata. However, to make further progress in Singularity Theory, it became
necessary to understand how these pieces fit together. This is where Whitney’s Stratifications
come into play.

Whitney’s conditions were introduced to address this issue, and they provided techniques,
such as controlled vector fields, that allowed us to extend results from manifolds to Whitney’s
stratified spaces. For an overview of Stratification Theory, check [4] and for learning the con-
trolled vector fields technique we refer the reader to [3].
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1.1 Introduction

The origines of the honeycomb problem are somewhat obscure since it has very deep roots
in history. The first fragments date back to 36B.C, when Marcus Terentius Varro, in his book
on agriculture, wrote about the hexagonal form of the bee’s honeycomb. About two centuries
later Pappus of Alexandria mentions this problem in his fifth book. He followed the much earlier
approach of Zenodorus (ca 180 B.C). In this era there were basically two competing theories
of the hexagonal structures. One theory held that the hexagon better accommodated the bee’s
six feet. The other theory, supported by the mathematitian of the day, was that the structure
was explained by an isoperimetric property of the hexagonal honeycomb. Varro wrote, does
the cambers in the comb has six angles [...] the geometricians prove that this hexagon inscribed
in a circoular figure encloses the greates amount of space. Therefore, scholars of antiquity, for
many centuries, retrace the well-known, and much earlier, Pythagorean isoperimetric problems.
In fact it was known to Pythagorean that only three figures can tile the plane: the triangle,
the square and the hexagon. Pappus basically uses this result in order to attribute a certain
geometric sense to the bees for the choice of hexagons. However his reason for restricting these
three figures are not strictly mathematical, in fact he also excludes gaps between the cells of
the honeycomb since "foreign matter could enter in the interstices between then and so defile
the purity of their produce". This easy-looking result will remain a mere "evidence in nature",
therefore a conjecture, for many centuries. None turned it into a theorem until 1999, when
T.Hales provided a complete proof of the 2D case. To date the conjecture is still open for higher
dimensions. It is possible to reformulate the convex case of the problem in terms of Centroidal
Voronoi tessellations (CVT’s), historically known as Gersho’s conjecture (1979). In 1999 Gruber
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gave the first complete analytic proof of the Gersho’s Conjecture in 2D, basically extending the
work of L. Fejes Tóth (1943). The first aim of this article is to highlights how the variational
approach to the problem, via CVT’s, was fundamental in reaching a solution. We detect it
just following the Gruber’s approach. Then we briefly discuss the 3D case, still open. We set
some open question and propose some related recent approach. In the second part of the article,
we will introduce the well-known Fortune’s algorithm which is an incremental approach based
on a sweepline technique to compute the Voronoi diagram of a bounded space given some point
sites. After a quick introduction to algorithm complexity, we will show how to improve Fortune’s
algorithm’s time complexity. Finally, we will discuss some optimization

1.2 Voronoi Diagrams

Voronoi diagrams are among the most important structures in computational geometry. A
Voronoi diagram records information about what is close to what. Let P = {p1, p2, . . . , pn} be a
set of n distinct points in the plane (or in any dimensional space), which we call sites. We define
V (pi), the Voronoi cell for pi, to be the set of points q in the plane that are closer (with respect
to a defined distance d) to pi than to any other site. That is, the Voronoi cell for pi is defined
to be:

V (pi) = {q|d(pi, q) < d(pj , q),∀j ̸= i}.

(a) Voronoi cells in 2D (b) Voronoi cells in 3D

Another way to define V (pi) is in terms of the intersection of halfplanes.

Definition 1.2.1. Given two sites pi and pj in the plane, we define the bisector of pi and pj as
the perpendicular bisector of the line segment ¯pipj.

B(pi, pj) = {x|d(pi, x) = d(pj , x)}

This bisector splits the plane into to half-planes.
Let’s denote the open halfplane that contains pi as h(pi, pj) and the open half-plane that contains
pj as h(pj , pi). Notice that r ∈ h(pi, pj) if and only if d(r, pi) < d(r, pj). From this, it is easy to
see that a point q lies in V (pi) if and only if q lies within the intersection of h(pi, pj) ∀j ̸= i.
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In other words, V (pi) =
⋂
j ̸=i

h(pi, pj).

Figure 1.1: The Voronoi cell of the central point is the intersection of the halfplanes that contains
it

By definition, each Voronoi cell V (p) is the intersection of n− 1 open halfplanes containing
the site p. Since the intersection of halfplanes is a (possibly unbounded) convex polygon, it is
easy to see that V (p) is a (possibly unbounded) convex polygon. Notice that different Voronoi
cells are disjoint. Finally, we define the Voronoi diagram of P, denoted V or(P ).

Definition 1.2.2. The common boundary of two Voronoi regions is called a Voronoi edge, if it
contains more than one point.

Definition 1.2.3. Endpoints of Voronoi edges are called Voronoi vertices; they belong to the
common boundary of three or more Voronoi cells.

Definition 1.2.4. Abusing the terminology slightly, we will use V or(P )E to indicate only the
edges and vertices of the subdivision

1.3 Gersho’s conjecture

The Gersho’s conjecture is basically a riformulation of the Honeycomb conjecture, under the
hypotesis of convexity, in terms of centroidal Voronoi tassellations (CVT). A CVT is realized
when the sited pi are exactly the centroid of their associated Voronoi region Vk.

CVT’s enjoy a variational characterization, based upon minimization of the following nonlocal
energy

E(Y ) :=

∫

Q
dist2(x, Y )dx (1.1)

This is the second moment energy associated to the centroids {yk}, k = {1, · · · , n}
A well-known conjecture attributed to Gersho adresses the periodic nature of the configura-

tion with least error, or equivalently the CV T with lowest energy. The following is the original
version of the conjecture:

Conjecture 1.3.1. (Gersho’s conjecture)
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Figure 1.2: Left: A Voronoi diagram (the Voronoi regions associated with six generators). Right:
Three centroidal Voronoi tassellations with five generators.

(a) There exist a polytope V with |V | = 1 which tiles the space with congruent copies such that
the following holds: let (Yn)n be a sequence of minimizers, with Yn minimizer with n points,then
the Voronoi cells of points Yn are asymptotically congruent to n−1/NV as n→ +∞.

(b) For dimension N = 2, the optimal polytope V is a regular hexagon, corresponding to an
optimal placemment of points on a triangluar lattice (cf. Figure 2 left). For dimension N = 3, the
optimal polytope V is the truncated octaedron, corresponding corresponding an optimal placement
of points on a BBC (body centered cubic) lattice (cf. Figure 2 right).

In other words this conjecture says that asymptotically speaking, all cells of the optimal
CVT, while forming a tessellation, are congruent to a basic cell which depends on the dimension.

Figure 1.3: Left: 2D optimal placement of points on a triangular lattice with associated optimal
Voronoi polytope a regular hexagon. Right: 3D conjectured optimal placement of points on a
BBC lattice and the associated optimal Voronoi polytope the truncated octaedron.

Gruber presented an elementary proof in 2D of Gersho’s conjecture. For convenience he took
the domain Ω to be a suitably-chosen n-gon; however, one can work on the arbitrary domain at
the expense of smaller-order boundary errors. This is the statemanet he proved.

Teorema 1.3.2. Let f : [0,+∞)→ R be a non-decreasing function and let H be a convex 3, 4, 5
or 6-gon in E2, for any set P of n points in E2,

S :=
∫
H min{f(∥x− p∥)} : p ∈ P}dx ≥ n

∫
Hn

f(∥x∥)dx,

where Hn is the regular hexagon in E2 of area |H|/n and center at the origin o.

The problem is widely addressed also in the three-dimensional case, where, as one might
expect, it becomes much more difficult. The foundamental difficulty of applying Gruber’s argou-
ments in 3D case is establishing the convexity in m of

G(a,m) := min
V

∫
V |x− y|2dx, y = centroid of V
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where V is a convex polytope having at most m faces and such that |V | = a.
We do not have regular m−hedron in 3D, and computations are unfeasible. A priori, the

maximum number of possible faces of the Voronoi polygons associated with the critical point
can grow with n. Rustum an Choksi proved some upper bounds on the geometric complexity
(including the number of faces) of such polygons which are independent of n. even if at this
point one expects that these results guarantee a way to extend the Gersho’s conjecture in 3D, the
two mathematicians reflect on the structural difference between the two cases, due to which the
presence, in 3D, is not expected of a universally optimal configuration. This is in stark contrast
with the 2D case, where the triangular lattice is almost surely to be universally optimal, although
no rigorous proof is available. Gersho’s conjecture would not be the first one in which such issue
appears: it it is well known that the solution to the optimal foam problem in 2D is given the
honeycomb structure, whose barycenters lie on the triangular lattice, while in 3D this is still
open, and the long conjectured solution, i.e. the bitruncated cubic honeycomb, is surely not
optimal, as it has higher energy than the Weaire-Phelan structure (see Figure 3).

·ma
Figure 1.4: Left: The bitruncated honeycomb. Right: The Weaire-Phelan structure

In conclusion, to date, the conjecture remains open in 3D. Barnes and Sloan have proven the
optimality of the BCC configuration amongst all lattice configurations, while Du and Wang have
presented numerical evidence supporting the conjecture. The non-local and non-convex character
of (1) insures a highly nontrivial energy landscape associated with a multitude of critical points
with complex, albeit polygonal, Voronoi regions.

1.4 Fortune’s algorithm

Fortune’s algorithm represents a milestone in the field of computational geometry. The strategy
in a plane sweep algorithm is to sweep a horizontal line—the sweep line —from top to bottom
over the plane. While the sweep is performed, information is maintained regarding the structure
that one wants to compute. More precisely, information is maintained about the intersection of
the structure with the sweep line. While the sweep line moves downwards the information does
not change, except at certain special points—the event points, which are any event that changes
the topological structure of the Voronoi diagram and the beach line.

Let’s try to apply this general strategy to the computation of the Voronoi diagram of a set
P = p1, p2, . . . , pn of point sites in the plane. According to the plan sweep paradigm we move a
horizontal sweep line l from top to bottom over the plane. The paradigm involves maintaining
the intersection of the Voronoi diagram with the sweep line. Unfortunately this is not so easy,
because the part of V or(P ) above l depends not only on the sites that lie above l but also on
sites below l.

126



XII Congreso del Máster en Investigación Matemática

Stated differently, when the sweep line reaches the topmost vertex of the Voronoi cell V (pi)
it has not yet encountered the corresponding site pi. Hence, we do not have all the information
needed to compute the vertex. We are forced to apply the plane sweep paradigm in a slightly
different fashion: instead of maintaining the intersection of the Voronoi diagram with the sweep
line, we maintain information about the part of the Voronoi diagram of the sites above l that
cannot be changed by sites below l.

Denote the closed half-plane above l by l+. What is the part of the Voronoi diagram above l
that cannot be changed anymore? In other words, for which points q ∈ l+ do we know for sure
what their nearest site is? The distance of point q ∈ l+ to any site below l is greater than the
distance of q to l itself. Hence, the nearest site of q cannot lie below l if q is at least as near to
some site pi ∈ l+ as q is to l+. The locus of points that are closer to some site pi ∈ l+ than to l
is bounded by a parabola. Hence, the locus of points that are closer to any site above l than to
l itself is bounded by parabolic arcs.

We call this sequence of parabolic arcs the beach line. It is a dynamic data structure that
plays a crucial role in handling events and updating the Voronoi diagram as the sweep line
progresses. Notice that the portion of the Voronoi diagram that lies above the beach line is
“safe” in the sense that we have all the information that we need in order to compute it (without
knowing about which sites are still to appear below the sweep line).

Figure 1.5: Only the portion of the Voronoi diagram that lies above the beach line is computed

Another way to visualize the beach line is the following. Every site pi above the sweep line
defines a complete parabola βi. The beach line is the function that, for each x-coordinate, passes
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through the lowest point of all parabolas.

Figure 1.6: The beachline

Observation 1.4.1. The beach line is x-monotone, that is, every vertical line intersects it in
exactly one point.

It is easy to see that one parabola can contribute more than once to the beach line. We’ll
worry later about how many pieces there can be. This behavior is a key feature that allows
the algorithm to maintain an accurate representation of the evolving Voronoi diagram. This dy-
namic reintroduction of parabolic arcs ensures that the algorithm can handle complex scenarios,
including the creation and removal of Voronoi vertices, as the sweep line progresses.

Notice that the breakpoints, the points along the beachline where adjacent parabolic arcs
intersect, equidistant from two sites and the sweep line, lie on edges of the Voronoi diagram and
may represent potential Voronoi vertices. This is not a coincidence: the breakpoints exactly
trace out the Voronoi diagram while the sweep line moves from top to bottom. These properties
of the beach line can be proved using elementary geometric arguments.From this we have the
following important characterization.

Lemma 1.4.2. The breakpoints of the beach line lie on Voronoi edges of the final diagram.

So, instead of maintaining the intersection of Vor(P) with l we maintain the beach line as we
move our sweep line l. We do not maintain the beach line explicitly, since it changes continuously
as l moves. This happens when a new parabolic arc appears on it, and when a parabolic arc
shrinks to a point and disappears.

First we consider the events where a new arc appears on the beach line. One occasion where
this happens is when the sweep line l reaches a new site. The parabola defined by this site is
at first a degenerate parabola with zero width: a vertical line segment connecting the new site
to the beach line. As the sweep line continues to move downward the new parabola gets wider
and wider. The part of the new parabola below the old beach line is now a part of the new
beachline. Figure 1.7 illustrates this process. We call the event where a new site is encountered
a site event.
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Figure 1.7: A new arc appears on the beach line because a site is encountered

What happens to the Voronoi diagram at a site event? Recall that the breakpoints on the
beach line trace out the edges of the Voronoi diagram. At a site event two new breakpoints
appear, which start tracing out edges. In fact, the new breakpoints coincide at first, and then
move in opposite directions to trace out the same edge. Initially, this edge is not connected to
the rest of the Voronoi diagram above the sweep line. Later on, the growing edge will run into
another edge, and it becomes connected to the rest of the diagram. So now we understand what
happens at a site event: a new arc appears on the beach line, and a new edge of the Voronoi
diagram starts to be traced out. Is it possible that a new arc appears on the beach line in any
other way? The answer is no :

Lemma 1.4.3. The only way in which a new arc can appear on the beach line is through a site
event.

An immediate consequence of the lemma is that the beach line consists of at most 2n − 1
parabolic arcs: each site encountered gives rise to one new arc and the splitting of at most one
existing arc into two, and there is no other way an arc can appear on the beach line. The nice
thing about site events is that they are all known in advance. Thus, after sorting the points by
y-coordinate, all these events are known.

The second type of event in the plane sweep algorithm is where an existing arc of the beach
line shrinks to a point and disappears. Let α′ be the disappearing arc, and let α and α′′ be the
two neighboring arcs of α′ before it disappears, as in the figure 1.8

Figure 1.8: An arc disappears from the beach line

Let α′ be the disappearing arc, and let α and α
′′ be the two neighboring arcs of α′ before
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it disappears. The arcs α′ and α
′′ cannot be part of the same parabola; this possibility can be

excluded in the same way as the first possibility in the proof of Lemma (1.4.3) was excluded.
Hence, the three arcs α, α′ and α

′′ are defined by three distinct sites pi, pj and pk. At the
moment α′ disappears, the parabolas defined by these three sites pass through a common point
q. Point q is equidistant from l and each of the three sites. Hence, there is a circle passing
through pi,pj and pk with q as its center and whose lowest point lies on l.

There cannot be a site in the interior of this circle: such a site would be closer to q than q is
to l, contradicting the fact that q is on the beach line. It follows that the point q is a vertex of
the Voronoi diagram.

This is not very surprising, since we observed earlier that the breakpoints on the beach
line trace out the Voronoi diagram. So when an arc disappears from the beach line and two
breakpoints meet, two edges of the Voronoi diagram meet as well. We call the event where the
sweep line reaches the lowest point of a circle through three sites defining consecutive arcs on
the beach line a circle event. From the above we can conclude the following lemma.

Lemma 1.4.4. The only way in which an existing arc can disappear from the beach line is
through a circle event.

Now we know where and how the combinatorial structure of the beach line changes: at a site
event a new arc appears, and at a circle event an existing arc drops out. We also know how this
relates to the Voronoi diagram under construction: at a site event a new edge starts to grow,
and at a circle event two growing edges meet to form a vertex.

Our goal is to compute the Voronoi diagram, so we need a data structure that stores the part
of the Voronoi diagram computed thus far. We also need the two ‘standard’ data structures for
any sweep line algorithm: an event queue, a data structure (often implemented as a priority
queue) that organizes events based on their x-coordinates, and a structure that represents the
status of the sweep line (and in our case the beachline). These data structures are implemented
in the following way.

■ We store the Voronoi diagram under construction in our usual data structure for subdivi-
sions, the doubly-connected edge list. A Voronoi diagram, however, is not a true subdivision
as defined before: it has edges that are half-lines or full lines, and these cannot be rep-
resented in a doubly-connected edge list. During the construction this is not a problem,
because the representation of the beach line will make it possible to access the relevant
parts of the doubly-connected edge list efficiently during its construction. But after the
computation is finished we want to have a valid doubly-connected edge list. To this end we
add a big bounding box to our scene, which is large enough so that it contains all vertices
of the Voronoi diagram. The final subdivision we compute will then be the bounding box
plus the part of the Voronoi diagram inside it.

■ The event queue Q is implemented as a priority queue, where the priority of an event is
its y-coordinate. It stores the upcoming events that are already known. For a site event
we simply store the site itself. For a circle event the event point that we store is the lowest
point of the circle, with a pointer to the leaf in T that represents the arc that will disappear
in the event.
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■ The beachline is represented by a balanced binary search tree T . The choice of such data
structure will be discussed later.

All the site events are known in advance, but the circle events are not. This brings us to one
final issue that we must discuss, namely the detection of circle events.

During the sweep the beach line changes its topological structure at every event. This may
cause new triples of consecutive arcs to appear on the beachline and it may cause existing triples
to disappear. Our algorithm will make sure that for every three consecutive arcs on the beach
line that define a potential circle event, the potential event is stored in the event queue Q.

There are two subtleties involved in this.

• First of all, there can be consecutive triples whose two breakpoints do not converge, that
is, the directions in which they move are such that they will not meet in the future; this
happens when the breakpoints move along two bisectors away from the intersection point.
In this case the triple does not define a potential circle event.

• Secondly, even if a triple has converging breakpoints, the corresponding circle event need
not take place: it can happen that the triple disappears (for instance due to the appearance
of a new site on the beach line) before the event has taken place. In this case we call the
event a false alarm.

So what the algorithm does is this. At every event, it checks all the new triples of consecutive
arcs that appear. For instance, at a site event we can get three new triples: one where the new
arc is the left arc of the triple, one where it is the middle arc, and one where it is the right arc.
When such a new triple has converging breakpoints, the event is inserted into the event queue Q.

Observe that in the case of a site event, the triple with the new arc being the middle one
can never cause a circle event, because the left and right arc of the triple come from the same
parabola and therefore the breakpoints must diverge. Furthermore, for all disappearing triples
it is checked whether they have a corresponding event in Q. If so, the event is apparently a false
alarm, and it is deleted from Q. This can easily be done using the pointers we have from the
leaves in T to the corresponding circle events in Q.

Lemma 1.4.5. Every Voronoi vertex is detected by means of a circle event
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1.5 Solving optimization problems through Voronoi diagrams

General setting. We consider n points in a bounded space S̄.

P = {pi | i ≤ n, pi ∈ S̄}

The points are meant to represent facilities and the bounding space some region containing the
facilities. Under this setting, we can consider the Voronoi diagram of S̄ generated by the points
of P and some distance (the Euclidean distance will be denoted dE). Let’s take a look at two
locational optimization problems in S̄ which can easily be solved once we have computed its
Voronoi diagram.

1.5.1 Largest empty circle problem

This problem consists in finding the location from which the distance to the nearest facility is
the longest in a bounded space S̄, i.e. find

max
p∈S̄/ ⋃

i∈I
si
min
i∈I
{dE(p, si)} (1.2)

The circle centered at the worst location with radius r given by expression 1.2 is the largest
circle in which there are no facilities. Thus, the problem of finding the worst location comes
down to finding the largest empty circle.

Figure 1.9: The Voronoi diagram of some set of points (in grey) and the largest empty circle.
We can see that its center lies on a vertex of the Voronoi diagram

Lemma 1.5.1. If Vi and Vj are two cells of a Voronoi diagram whose sites are respectively si
and sj and p, p′ ∈ Vi, then d(p, si) ≤ d(p′, sj).

Proof. From the definition of the Voronoi diagram, we know that d(p, si) ≤ d(p, sj)
triangular inequality

≤
d(p, p′) + d(p′, sj) ≤ d(p′, sj).

Lemma 1.5.2. In any cell Vi of a Voronoi diagram, the farthest point q∗i from the site si exists
on one of its vertices.
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Proof. Let V be a Voronoi diagram generated by s1, ..., sn. Let Vi be the cell whose site is si.
Let pi ∈ Vi, pij ∈ Vi, Vj and pijk ∈ Vi, Vj , Vk. In other words, pij is on the edge between Vi and
Vj and pijk is on the vertex at the junction of Vi, Vj and Vk.

From lemma 1.5.1 we know that, dE(pi, si) ≤ dE(pij , sj). Therefore, dE(pij , si) = dE(pij , sj) =⇒
dE(pi, si) ≤ dE(pij , si). What’s more, dE(pij , si) ≤ dE(pijk, sk) and dE(pijk, si) = dE(pijk, sk) =⇒
dE(pij , si) ≤ dE(pijk, si). Everything put together, we have that the farthest point from si in Vi
is on one of its vertices.

From lemma 1.5.2, we deduce that once we have the Voronoi diagram of S̄, the solu-
tion of the largest circle problem is readily obtained by finding the maximum value among
{dE(qij , pi) | i = 1, . . . , n ; j = 1, . . . ,mi} where qij is the j-th vertex of the i-th cell.

If the Voronoi diagram has been computed with Fortune’s algorithm, all these values (which
correspond to the radius of the circles at each Circle Event) have already been calculated. There-
fore, a few minor adjustments that don’t increase the algorithm’s complexity enable it to also
solve the largest empty circle problem.

let Q be the ordered list of upcoming events
let B the beachline
let V the Voronoi diagram under construction
r∗ ← 0
while Q is not empty do

E ← topmost event in Q
if E is a site event then

update B consequently
look for new circle events

end
if E is a circle event then

insert the corresponding vertex into V
remove the shrunk arc A from B
remove upcoming events involving A from Q
look for new circle events
if rC > r∗ then

r∗ ← rC
end

end
end

Algorithm 1: Description of Fortune’s algorithm modified to also solve the Largest Circle
Problem

1.5.2 Smallest enclosing circle problem

It consists in finding the location from which the distance to the farthest facility is the shortest,
i.e. find

min
p∈S̄/ ⋃

i∈I
si
max
i∈I
{dE(p, si)}
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This problem can be solved through the farthest-point Voronoi diagram which is one obtained
by using not the Euclidean distance but its opposite (d = −dE). The farthest-point Voronoi di-
agram partitions the plane in convex regions in each of which the farthest site is the same.

Figure 1.10: A farthest-point Voronoi diagram, its diameter (the blue dashed line) and an
enclosing circle (in red). Region V (i) contains all the points whose most distant site is number i

This diagram has the property that for every vertex qi there exists a unique circle Ci centered
at qi which passes through three or more sites and encloses all other sites. This circle is called
an enclosing circle.

The center of the smallest enclosing circle may exist on the middle of the diameter (the
segment whose ends are the two sites furthest apart) or may be on a vertex of the farthest-point
Voronoi diagram. Thus, the procedure for solving this problem consists of two steps. First, we
examine if the circle whose diameter is the diameter of the diagram is an enclosing circle. If so,
its center is solution to the problem. If not, the solution can be found among the enclosing circles
Ci centered at qi. Once again, if the diagram has been computed with Fortune’s algorithm, these
circles have already been processed.
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1.1 Introduction

In the 19th century, while studying the distribution of prime numbers, Bernhard Riemann
revolutionized number theory by introducing the Riemann zeta function, establishing a deep
connection between prime numbers and complex analysis. In his 1859 memoir [13], he proposed
what is now known as the Riemann hypothesis: the conjecture that all non-trivial zeros of the
zeta function lie on the critical line Re (s) = 1/2. This hypothesis remains one of the most
important unsolved problems in mathematics and is listed among the seven Millennium Prize
Problems, with the Clay Mathematics Institute offering a one-million-dollar reward for a correct
proof.

An indirect approach to understanding the hypothesis involves bounding the number of
zeros that may lie off the critical line. These so-called zero-density estimates have significant
implications for the distribution of prime numbers and are closely linked to the behavior of
Dirichlet polynomials, which play a key role in detecting zeros of the zeta function through their
large-value behavior.

This article begins with an exposition of the Riemann zeta function and its functional prop-
erties, laying the groundwork for the Riemann hypothesis. We then explore the relationship
between zero-density estimates and Dirichlet polynomials, highlighting classical contributions
such as those of Ingham. The final part is devoted to the recent breakthrough by Larry Guth
and James Maynard (2024), who, through tools from harmonic analysis, established improved
bounds that represent a significant step forward in this line of research.

1.1.1 Preliminaries

Definition 1.1. The Riemann zeta function is defined for all s ∈ C with Re(s) = σ > 1 as

ζ(s) =

∞∑

n=1

1

ns
.

The function ζ defines a holomorphic function in Re (s) > 1.

Theorem 1.2. Let s ∈ C with Re(s) > 1. Then

ζ(s) =
∏

p prime

1

1− 1/ps
.
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In particular, ζ(s) has no zeros in Re (s) > 1.

To extend this function to a larger domain, it is useful to introduce the gamma function.

Definition 1.3. Let s ∈ C with Re(s) > 0. We define

Γ(s) =

∫ ∞

0
ts−1e−tdt.

The gamma function can be extended to a holomorphic function in C \ {0,−1,−2,−3, . . .}
that has no zeros and where 0,−1,−2,. . . are simple poles.

A proof of the result above can be found in [9, Chapter 6, Theorem 1.4].

Definition 1.4. Let s ∈ C with Re(s) > 1. We define

ξ(s) = Γ(s/2)ζ(s)π−s/2.

ξ can be extended to a holomorphic function in C \ {0, 1} and where 0 and 1 are simple poles
with residues −1 and 1, respectively. Moreover, ξ(s) = ξ(1− s) for all s ̸= 0, 1.

Corollary 1.5. The Riemann zeta function can be extended to a holomorphic function C \ {1}
where 1 is a simple pole.

ζ(s) = πs/2ξ(s)
1

Γ(s/2)
.

Definition 1.6. ζ has simple zeros in s = −2,−4,−6, . . .. These complex numbers are called
the trivial zeros of ζ.

The case s = 0 is different because ξ has a pole in 0. Taking into account that Γ(1) = 1 and
Res(ξ, 1) = −1, we can calculate ζ(0) = −1/2.

As a consequence of ξ(s) = ξ(1− s) we obtain the following equality.

Corollary 1.7 (Functional equation). For all s ̸= 0, 1

Γ(s/2)ζ(s)π−s/2 = Γ

(
1− s
2

)
ζ(1− s)π(s−1)/2,

regarding the evaluation as a limit when s = −2,−4, . . . , or s = 1, 3, 5 . . .

Corollary 1.8. The set of non-trivial zeros of ζ is symmetric respect to the line Re(s) = 1/2.

The case of s = −2,−4, . . . is different because Γ has a simple pole in s/2 and the RHS of
the functional equation does not vanish.

From Theorem 1.2 and 1.8, we get that if Re(s) < 0 then ζ(s) = 0 only if s is a trivial zero.
We conclude that the only non-trivial zeros of ζ must be in the strip 0 ≤ Re(s) ≤ 1. Moreover
we have this result

Theorem 1.9. ζ does not have zeros on the lines Re(s) = 0 and Re(s) = 1.

We are now in a position to state the Riemann hypothesis

Conjecture 1.10 (Riemann hypothesis). All non-trivial zeros of ζ are in the line Re(s) = 1/2.

Remark 1.11. The set of non trivial zeros of ζ is also symmetric respect to the real axis. This
is a consequence of ζ(s) = ζ(s), which can be proved directly when Re(s) > 1 and then extended
by the Analytic Continuation Principle.
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Definition 1.12. Let N(σ, T ) be the number of zeros of the Riemann zeta function ζ(s) in the
rectangle Re(s) ≥ σ, 0 ≤ Im(s) ≤ T .

Remark 1.13. Note that by Theorem 1.2, if σ < 1, N(σ, T ) is the number of zeros of ζ in the
rectangle σ ≤ Re(s) ≤ 1, 0 ≤ Im(s) ≤ T , which is a compact set. Since a holomorphic function
non identically zero cannot have infinite zeros in a compact set, N(σ, T ) is a natural number.

Now, by Corollary 1.8 and Remark 1.11, we can write the Riemann hypothesis as follows:

Conjecture 1.14 (Riemann hypothesis). N(σ, T ) = 0 for all σ > 1/2 and T > 0.

In relation to this notation we have the following result stated by Riemann [13] and proved
by von Mangoldt. A proof can be found in [4, Theorem 9.4].

Theorem 1.15 (Riemann-von Mangoldt Formula). Let T > 0 and let N(T ) denote the number
of zeros of the function ζ(s) in the rectangle 0 ≤ Re(s) ≤ 1, 0 ≤ Im(s) ≤ T . Then

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

Theorem 1.2 gave us a relationship between ζ and prime numbers. We now present a famous
theorem whose proof involves the zeta function.

We will first introduce several notations. A ≲ B means that there exists a constant C
verifying A ≤ CB. A ≲z B means that for every z there exists a constant C(z) depending on z
so that A ≤ C(z)B. A ≍ B means that A ≲ B and B ≲ A both hold. A ⪅ B means that for
every ε > 0 there exists a constant C(ε) depending on ε verifying A ≤ C(ε)T εB for all large T .
f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1.

Theorem 1.16 (Prime Number Theorem). Let π(x) denote the number of primes not exceeding
x. Then

π(x) ∼ x

log(x)
as x→∞.

This theorem was originally proved by Hadamard [8] and de la Vallée Poussin [10] in 1896
using properties of the zeta function. Later, in 1949 Selberg [12] and Erdos [11] an elementary
proof of this theorem. In fact, the title of Riemann’s original article [13] translated into English
is “On the Number of Prime Numbers less than a Given Quantity”.

A consequence of prime number theorem is

π(2x)− π(x) ∼ x

log(x)
as x→∞.

So, we can ask if

π(x+ xθ)− π(x) ∼ xθ

log(x)
as x→∞, (1.1)

for some θ < 1. Ingham proved in 1937 that the values of θ satisfying (1.1) are related to some
bounds of N(σ, T ).

Theorem 1.17. If N(σ, T ) ≲ TA(1−σ) logB T for all 1/2 ≤ σ ≤ 1 then (1.1) is satisfied by

1− 1

A
< θ < 1.
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1.1.2 State of the art

Experience has shown that the following quantity is the most important to control when bound-
ing the number of zeros of ζ (for example, see Theorem 1.17).

Definition 1.18. For 1/2 ≤ σ ≤ 1, we define A(σ) as the least non-negative constant for which
one has an asymptotic

N(σ, T ) ≲ TA(σ)(1−σ)+o(1)

as T →∞.

Figure 1.1: Best-known bounds for A(σ)

Figure 1.1 shows the best-known bounds for A(σ), showing the improvement of Guth and
Maynard’s result over previous bounds. We obtained these bounds from a collection in [14].

1.2 Main results

We present the main results of this work. We first give an overview of important bounds on
the number of zeros of the Riemann zeta function. Then, we present the main result of the
preprint of Guth and Maynard [1], which, using bounds for the frequency of zeros of Dirichlet
polynomials taking large values, gives a new bound on the number of zeros of the Riemann zeta
function.

1.2.1 Bounds on zeros of the Riemann zeta function

First, we present key bounds on the number of zeros of the Riemann zeta function known to
date, which, as we have seen in Theorem 1.17, give information about the distribution of primes
in short intervals. We start by presenting a trivial bound. Then we give an overview of Ingham’s
bound from 1940. Lastly, we study the recent Guth and Maynard’s bound, where we develop
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the zero-detecting setup, which is a classical set-up for detecting zeros of the Riemann zeta
function.

On the one hand, the Riemann-von Mangoldt formula 1.15 gives us the asymptotic

N(1/2, T ) ≍ T log T = T 1+o(1),

which, based on the definition of A(σ), implies that A(1/2) = 2. On the other hand, Theorem
1.2 and Theorem 1.9 tell us that

N(1, T ) = 0,

which implies that A(1) = 0. Since N(σ, T ) is decreasing in σ, and hence so is A(σ)(1− σ), we
get for 1/2 ≤ σ ≤ 1

0 = A(1)(1− 1) ≤ A(σ)(1− σ) ≤ A(1/2)(1− 1/2) = 1,

which gives us the trivial “von Mangoldt” zero density theorem

A(σ) ≤ 1

1− σ .

Ingham’s result from 1940 gives us a better bound for A(σ), and is still the best known
bound for 1/2 ≤ σ ≤ 0.7. This result was proven in [3] using already developed results in [2], so
we refer the interested reader to these works for a proof.

Theorem 1.19 (Ingham, 1940). We have

N(σ, T ) ≲ T
3

2−σ
(1−σ)+o(1)

for every 1/2 ≤ σ ≤ 1.

This gives A(σ) ≤ 3
2−σ , which is better than the trivial bound.

We review the classical set-up for detecting zeros of the Riemann zeta function, which was
unified by Montgomery in [5, Chapter 12] in 1971 using previous developments. A modern
development of the set-up can be found in [6, Appendix C].

Recall that the Möbius function is defined by

µ(n) =





1 if n = 1,

(−1)k if n is a product of k distinct primes,

0 otherwise.

Definition 1.20 (Type I/II zeros). Let ρ = β + iγ be a non-trivial zero of ζ with γ ∈ [T, 2T ].

1. We say ρ is a ‘Type I zero’ if

|DN (ρ)| ≥
1

3 log T

for some N = 2j ∈ [T 1/100, T 1/2(log T )2], where DN is given by

DN (s) :=
∑

n∈[N,2N ]

a(n)

ns
exp
(
− n

T 1/2

)
, (1.2)

a(n) :=
∑

d|n
d≤2T 1/100

µ(d).
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2. We say ρ is a ‘Type II zero’ if

∣∣∣ 1

2πi

∫

(−β+1/2)
T s/2Γ(s)M(ρ+ s)ζ(ρ+ s)ds

∣∣∣ ≥ 1

3
,

where

M(s) :=
∑

m≤2T 1/100

µ(m)

ms
.

Lemma 1.21. Every non-trivial zero ρ = β+iγ of the Riemann zeta function ζ with γ ∈ [T, 2T ]
for T sufficently large is either a Type I zero or a Type II zero (or both).

The strategy is to show that these conditions can only hold infrequently. Let RI(σ, T ) denote
the number of Type I zeros with β ≥ σ and γ ∈ [T, 2T ], and let RII(σ, T ) denote the number of
Type II zeros with β ≥ σ and γ ∈ [T, 2T ]. The Type II zeros cause few problems.

Lemma 1.22. We have

RII(σ, T )≪ T 2(1−σ)(log T )O(1).

A proof of this Lemma is given in [6, Lemma 6.3]. The hardest part of this zero detecting set-
up is bounding the number of Type I zeros. For this we need to control the Dirichlet polynomial
DN (s) defined in (1.2), which is the main object of study in the next section.

The main result of Guth and Maynard’s article [1] is the following. We give an overview of
the proof in the next subsection.

Theorem 1.23 (Large values estimate). Suppose (bn) is a sequence of complex numbers with
|bn| ≤ 1, and (tr)r≤R is a sequence of 1-separated points in [0, T ] such that

∣∣∣
2N∑

n=N

bnn
itr
∣∣∣ ≥ V

for all r ≤ R. Then we have

R ≤ T o(1)
(
N2V −2 +N18/5V −4 + TN12/5V −4

)
.

Theorem 1.23 allows to bound the number of Type I zeros, which gives the following novel
result of Guth and Maynard, giving a bound on the number of zeros of the Riemann zeta
function. This is known as a zero density estimate.

Theorem 1.24 (Zero density estimate). We have

N(σ, T ) ≲ T
15

3+5σ
(1−σ)+o(1).

for every 1/2 ≤ σ ≤ 1.

This gives A(σ) ≤ 15/(3+5σ), which is better than previous bounds for 0.7 ≤ σ ≤ 0.8. Most
importantly, this bound reduces ∥A∥∞ from 12/5 = 2.4 (thanks to a 1972 result of Huxley), to
30/13 = 2.307 . . . . This gives more information on the behavior of primes, for example, applying
A = ∥A∥∞ to Theorem 1.17.
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Proof of Theorem 1.24. Theorem 1.24 follows from Ingham’s result 1.19 if σ ≤ 7/10 and a
result given by Huxley in [7] if σ ≥ 8/10, which is A(σ) ≤ 3/(3σ − 1), so we may assume that
σ ∈ [7/10, 8/10]. It suffices to show the bound of Theorem 1.24 for zeros with imaginary part
in [T, 2T ], since the result for [0, T ] then follows by considering T/2, T/4, . . . in place of T .

Now, given a parameter N , we consider the Dirichlet polynomials defined in (1.2). Since we
already know that the number of Type II zeros is sufficiently small because of Lemma 1.21, it
suffices to bound the number of Type I zeros. There are O(log T ) choices of N so we focus on
the value of N which gives the largest number of Type I zeros.

We now make a slight modification to DN to remove the dependencies on the real parts. Let
ρ = β + iγ be a Type I zero with β ≥ σ, and let ψ(u) be a smooth function equal to eu(β−σ) on
[logN, log 2N ] and supported on [(logN)/2, 2 logN ] with ∥ψ(j)(t)∥∞ ≲j t

−j for all j ∈ N. We
then note that by Fourier expansion

DN (ρ) =
∑

n∈[N,2N ]

bnn
−σ−iγψ(log n) =

1

2πi

∫

ξ
ψ̂(ξ)

(
DN (σ + i(γ + 2πξ))

)
dξ.

Since ψ̂ is rapidly decreasing, we may truncate the integral to ξ ⪅ 1 at the cost of an O(T−100)
error term. Therefore we see that if ρ is a Type I zero, we have |DN (σ + iγ + iξ)| ⪆ 1 for some
ξ ⪅ 1. There are O(log T ) non-trivial zeros ρ = β + iγ with γ ∈ [t, t + 1] for any t ∈ [T, 2T ].
Therefore we can find a 1-separated set of points (sr)r≤R in [T, 2T ] with |DN (σ + isr)| ⪆ 1 and
the number R of points satisfies R ⪆ N(σ, 2T )−N(σ, T ). Let

b̃n :=
(N
n

)σ
bn, D̃N (t) :=

∑

n∈[N,2N ]

b̃nn
it = NσDN (σ + it).

Thus it suffices to show that if N < T 1/2+o(1) and W is a 1-separated set in [T, 2T ] such that
|D̃N (t)| ⪆ Nσ, we have |W | ⪅ T 15(1−σ)/(3+5σ)+o(1).

If T 5/(3+5σ) ≤ N2 ≤ T 75(1−σ)/(54+30σ−100σ2), then we use Theorem 1.23 applied to the
Dirichlet polynomial D̃2

N of length N2, which shows that (noting that σ ∈ [7/10, 8/10] implies
that the N2V −2 term is dominated by the N18/5V −4 term)

|W | ⪅ (T 75(1−σ)/(54+30σ−100σ2))18/5−4σ + T (T 5/(3+5σ))12/5−4σ

⪅ T 15(1−σ)/(3+5σ).

If instead N lies outside of these ranges, using classical estimates applying the Mean Value
Theorem gives good enough bounds. To see proof of these explicitly we refer the reader to [1,
Theorem 1.2].

1.2.2 Main result of Guth and Maynard

Our main task is to prove Theorem 1.23. Theorem 1.23 would be a consequence of the following
proposition.

Proposition 1.25. Let σ ∈ [0.7, 0.8], w ∈ C∞(R), a real function supported on [1, 2] that values
1 on

(
t[65 ,

9
5

)
ght], and ||w(j)||∞ < ∞ for every j ≥ 0. Suppose (bn) is a sequence of complex

numbers with |bn| ≤ 1, and W ⊂ [0, T ], is a set of 1-separated points such that
(
t|
∑

n

w
(
t(
n

N

)
ght)bnn

it

)
ght| ≥ Nσ, ∀t ∈W,

then
|W | ≤ CT o(1)(N 18

5
−4σ + TN

12
5
−4σ).
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Recalling a Dirichlet Polynomial as the expression

DN (t) =
∑

n

w
( n
N

)
bnn

it.

We will prove Proposition 1.25. GivenW = {t1, . . . , tr} ⊂ R, letMW be the r×(N−1)-sized
matrix defined as

MW :=




w
(
t(N+1

N

)
ght)(N + 1)it1 w

(
t(N+2

N

)
ght)(N + 2)it1 · · · w

(
t(2N−1

N

)
ght)(2N − 1)it1

w
(
t(N+1

N

)
ght)(N + 1)it2 w

(
t(N+2

N

)
ght)(N + 2)it2 · · · w

(
t(2N−1

N

)
ght)(2N − 1)it2

...
...

. . .
...

w
(
t(N+1

N

)
ght)(N + 1)itr w

(
t(N+2

N

)
ght)(N + 2)itr · · · w

(
t(2N−1

N

)
ght)(2N − 1)itr



,

or equivalently,

MW (k, j) = w

(
t(
N + j

N

)
ght)(N + j)itk .

Let us see that the number of large values of DN is controlled by this matrix’s singular
values.

Lemma 1.26. Let sj(MW ) be the jth largest singular value of MW . If |DN (t)| ≥ Nσ for all
t ∈W , and |bn| ≤ 1, then

|W | ≤ N1−2σ|s1(MW )|2.

Proof. Let b = (bn)n. First, observe that

DN (t) =
∑

n

w
( n
N

)
bnn

it = (MW b)t.

On the other hand, since N2σ ≤ |DN (t)|2, we have

|W |N2σ ≤
∑

t∈W
|DN (t)|2 = ∥MW b∥22 ≤ ∥MW ∥22∥b∥22 ≤ |s1(MW )|2N.

We also know that the infinity norm of a vector is smaller than any r-norm, so we can find
out the following inequality

|s1(MW )|2 = s1(MW
T
MW ) ≤


∑

j

sj(MW
T
MW )r




1
r

=
(
tr((MW

T
MW )r)

) 1
r
.

We will find bounds for the trace of (MW
T
MW )3. If we notice that

(MW
T
MW )t1,t2 =

∑

n

w
( n
N

)2
ni(t1−t2),

it seems natural to study the function ht(u) := w(u)2uit. We will expand the trace of the cubed
matrix, and then perform Poisson summation, so we need to bound the Fourier transform of ht.
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Lemma 1.27. For any integer j ≥ 0, we have

ĥt(ξ) ≲j
(1 + |t|)j
|ξ|j

and

ĥt(ξ) ≲j
(1 + |ξ|)j
|t|j .

We will apply these two lemmas to bound the trace of the cubed matrix.

Proposition 1.28. If W is T ε-separated, then

tr((MW
T
MW )3) = N3|W |||w||6L2 +

∑

m∈Z3−{0}
Im +Oε(T

−100),

where m = (m1,m2,m3) and

Im = N3
∑

t1,t2,t3∈W
ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N).

Proof. Let us expand the trace of the cubed matrix

tr((MW
T
MW )3) =

∑

m1,m2,m3∈Z

∑

t1,t2,t3∈W
w
(m1

N

)2
w
(m2

N

)2
w
(m3

N

)2
m
i(t1−t2)
1 m

i(t2−t3)
2 m

i(t3−t1)
3

=
∑

m1,m2,m3∈Z

∑

t1,t2,t3∈W
ht1−t2

(m1

N

)
ht2−t3

(m2

N

)
ht3−t1

(m3

N

)
,

then by Poisson summation, we get

tr((MW
T
MW )3) =

∑

m1,m2,m3∈Z

∑

t1,t2,t3∈W

̂
ht1−t2

(m1

N

) ̂
ht2−t3

(m2

N

) ̂
ht3−t1

(m3

N

)

= N3
∑

m1,m2,m3∈Z

∑

t1,t2,t3∈W
ĥt1−t2 (m1N) ĥt2−t3 (m2N) ĥt3−t1 (m3N) .

Let us see the term I0 = N3
∑

t1,t2,t3∈W ĥt1−t2 (0) ĥt2−t3 (0) ĥt3−t1 (0). By Lemma 1.27, if t1 ̸= t2,

then ĥt1−t2(0) ≲ 1
|t1−t2|100 ≲ε T

−100. So all the terms are negligible unless t1 = t2 = t3, which
gives

I0 = N3|W |ĥ0(0)3 +N3Oε(T
−100) = N3|W |||w||6L2 +N3Oε(T

−100).

By Lemma 1.26 and Proposition 1.28, we get the following result.

Proposition 1.29. Let W be T ε-separated, and |bn| ≤ 1 such that |DN (t)| ≥ Nσ for all t ∈W ,
then

|W | ≲ε N
2−2σ +N1−2σ


 ∑

m∈Z3−{0}
Im




1
3

.
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The remaining work is to bound S =
∑

m∈Z3−{0} Im. It has been explained that if t1 ̸= t2,
then

ĥt1−t2(0) ≲ε T
−100,

and ĥ0(0) =
∫
w2 ≈ 1. But we have not used the first claim of Lemma 1.27. Indeed, if t1 = t2

and m ̸= 0, by first claim of Lemma 1.27, then

ĥ0(mN) ≲ m−100N−100.

The last bound is useful when mN > T 1+ε, since |t1 − t2| ≤ T for all t1, t2 ∈ W we get with
j > 200

ε + 100,

|ĥt1−t2(mN)| ≲ε
(1 + |t1 − t2|)j

mjN j
≲ T 100

m100N100

T
200
ε

T (1+ε)200/ε
=

T 100

m100N100

1

T 200
≤ T−100m−100.

It seems natural to separate the sum S into different pieces, S = S1 +S2 +S3, where S1 are
the summands where m has two zero components, S2 the summands where m has only one zero
component, and S3 the summands where m has non-zero components. The results, which we
enounce below, are [1, Proposition 5.1], [1, Proposition 6.1] taking k = 4, and [1, Proposition
11.2], respectively. In these we use the notation of Proposition 1.25.

Proposition 1.30. We have

S1 = Oε(T
−10),

|S2| ⪅ N2|W |2 + TN |W |7/4 +N2|W |2−3/8T 1/8.

Moreover, if T ≥ N3/4, then

|S3| ⪅ T 2|W |3/2 + T |W |N3−2σ + T |W |2N3/2−σ + T 9/8|W |29/16N3/2−σ.

We can use these bounds to find a bound for |W | following the argument left by Proposition
1.29.

Proof of Proposition 1.25. We got from Proposition 1.29 that

|W |N2σ−1 ≲ εN +
(∑

m ∈ Z3 − 0Im

) 1
3
.

This and Proposition 1.30 imply that

|W |3N6σ−3 ≲ε N3 + S1 + S2 + S3

⪅ N3 +N2|W |2 + TN |W |7/4 +N2|W |2−3/8T 1/8

+T 2|W |3/2 + T |W |N3−2σ + T |W |2N3/2−σ + T 9/8|W |29/16N3/2−σ,

choosing T = N
6
5 ,

|W | ⪅ T (N (4−10σ)/5 +N (19−30σ)/5 +N (74−120σ)/25 +N (298−480σ)/95

+N (12−20σ)/5 +N (9−14σ)/5 +N (354−560σ)/95).

Finally, if σ ∈ [0.7, 0.8] we get |W | ⪅ TN (12−20σ)/5.
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1.3 Conclusions

We have seen that finding better bounds for A(σ) function needs the development of new
techniques, and these bounds are more and more difficult to improve. Dirichlet polynomials
are the main tool that Guth and Maynard treated, and a better bound was proven in a short
interval. For instance, researchers are seeking for better estimations of the A(σ) function, which
will not be sufficient to prove Riemann hypothesis. It seems that Riemann hypothesis will
remain as a Millennium problem for a long time.
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[13] Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse,
Monatsberichte der Berliner Akademie, 671–680, 1859.

[14] Timothy S. Trudgian and Andrew Yang, Toward optimal exponent pairs, arXiv
preprint arXiv:2306.05599 [math.NT], 2024.

146



Comparative Analysis of Iterative Methods for

Real-Time Selective Harmonic Elimination in

Multilevel Inverters
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1.1 Introduction

Multilevel inverters have gained substantial attention in high-power and high-voltage applica-
tions due to their ability to reduce harmonic distortion and enhance overall efficiency. One widely
studied technique for improving the output waveform quality is Selective Harmonic Elimination
(SHE), which aims to eliminate specific harmonic orders while maintaining the desired funda-
mental component. In the existing literature, several methods rely on symbolic computations
(e.g., Groebner basis transformations in tools like Maple) to find the switching angles required
for SHE. Although these approaches yield accurate solutions, they are often computationally de-
manding and less adaptable in real-time scenarios. To address this gap, the present work builds
upon the strategy proposed in “Adaptive Real-Time Selective Harmonic Elimination for a Cas-
caded Full-Bridge Multilevel Inverter,” which introduced a fourth-degree nonlinear equation
describing the switching angles. Previous results confirmed the effectiveness of the polynomial
formulation in reducing significant odd-order harmonics (e.g., 3rd, 5th, and 7th) while satisfy-
ing the fundamental voltage requirement. However, to achieve real-time adaptability and lower
computational overhead, alternative numerical methods—encompassing Newton-based schemes,
evolutionary algorithms, and swarm intelligence—are investigated here. By systematically com-
paring the convergence rate, accuracy, and execution cost of these methods, this work offers
new insights and guidelines for selecting robust and efficient numerical approaches for adaptive
control in multilevel inverters.

1.2 System Description and Problem Formulation

Consider a Cascaded Full-Bridge Multilevel Inverter (CFBMI) of four full-bridge cells (FBCs)
like figure-1.1, each supplied by a DC voltage Ek. If each FBC switches at angles θk symmetri-
cally around π/2, the output voltage per cell is

vHk
(t) =

∞∑

l=1
l odd

4Ek
l π

cos(l θk) sin(l ωt), (1.1)
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hence the total inverter output is

van(t) =
4∑

k=1

vHk
(t) =

4

π

∞∑

l=1
l odd

(
1
l

4∑

k=1

Ek cos(l θk)
)
sin(l ωt). (1.2)

(a) (b)

Figure 1.1: (a) Cascaded Full-Bridge Inverter topology; (b) Output voltage waveform.

Defining the l-th harmonic amplitude as

hl =
4

l π

4∑

k=1

Ek cos(l θk), (1.3)

and letting each Ek = E (1 + δk), one obtains normalized harmonics

h′l =
hl
E

=
4

l π

4∑

k=1

(
1 + δk

)
cos(l θk). (1.4)

Utilizing Chebyshev polynomials Tl(xk) with xk = cos(θk), these amplitudes become

h′l =
4

l π

4∑

k=1

(
1 + δk

)
Tl
(
xk
)
. (1.5)

Selective Harmonic Elimination (SHE) imposes

h′1 = H ′
1, h′3 = 0, h′5 = 0, h′7 = 0,

yielding a fourth-degree polynomial system in the variables {xk}. A Gröbner-basis transforma-
tion (via Buchberger’s algorithm) reshapes this system into a triangular form:

Q
(
x1, x2, x3, x4, H

′
1

)
= 0, (1.6)
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where each polynomial enforces fundamental amplitude while annihilating targeted harmonics.
Solving this system produces the switching angles θk = arccos(xk), which ensures the desired
harmonic elimination for a given fundamental voltage H ′

1 and any voltage perturbations δk.
In what follows, we explore numerical methods capable of solving these polynomial equations
efficiently for real-time or near-real-time control.

1.3 Proposed Iterative Methods

Efficiently solving the polynomial system derived from the SHE conditions requires robust al-
gorithms. Below, we outline six iterative methods, highlighting their core update schemes and
convergence properties.

1.3.1 Monovariable Approaches

Newton-Raphson

For a scalar equation f(x) = 0, the classical iteration is

xn+1 = xn −
f(xn)

f ′(xn)
, (1.7)

with quadratic convergence (O(|x − α|2)) if f ′(xn) ̸= 0. Applied to the univariate polynomial
arising from, e.g., a Gröbner-basis factor, it rapidly converges to a root provided the initial guess
x0 is close to the actual solution.

Modified Newton-Raphson

Including second-derivative information,

xn+1 = xn −
f(xn) f

′(xn)[
f ′(xn)

]2 − f(xn) f ′′(xn)
, (1.8)

yields cubic convergence (O(|x − α|3)). This enhanced rate is beneficial when function evalua-
tions, including f ′′(x), are tractable. In SHE polynomials of degree 4–7, the second derivative
is analytically feasible.

Ehrlich-Aberth Method

Specifically aimed at finding all roots of a polynomial F (x) of degree n, it updates each approx-

imate root x
(m)
k via

x
(m+1)
k = x

(m)
k − F

(
x
(m)
k

)

F ′(x(m)
k

)
− F

(
x
(m)
k

) ∑

j ̸=k

1

x
(m)
k − x(m)

j

. (1.9)

The correction term prevents different xk from converging to the same root. This method is
particularly advantageous in polynomial-based SHE, ensuring all physical roots (cos(θk)) are
obtained in a single procedure.
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1.3.2 Multivariable and Hybrid Approaches

Newton-Raphson for Systems

For F(x) = 0, each iteration uses the Jacobian J(xn):

xn+1 = xn − J
(
xn
)−1

F
(
xn
)
, (1.10)

with quadratic convergence near the solution if J(x∗) is nonsingular. For the SHE system,
x = [x1, x2, . . . , xN ]

T , this approach may converge rapidly to cos(θk) when given a well-chosen
initial estimate.

Newton + Differential Evolution

To mitigate the sensitivity of Newton’s method to initial guesses, a hybrid algorithm first applies
Differential Evolution (DE), which evolves a population {xi} through mutation,

vi = xr1 + F
(
xr2 − xr3

)
,

and crossover, then selects the best candidate as x0. Subsequently, a few Newton steps refine
this candidate to achieve faster local convergence. This global-local strategy ensures robust and
efficient solutions for polynomial systems in SHE.

Particle Swarm Optimization

PSO is a derivative-free global approach where each particle xi updates velocity vi and position
based on local (pbesti) and global (gbest) optima:

v
(k+1)
i = w v

(k)
i + c1R1

(
pbesti − x

(k)
i

)
+ c2R2

(
gbest− x

(k)
i

)
, (1.11)

x
(k+1)
i = x

(k)
i + v

(k+1)
i , (1.12)

leading to wide exploration in multimodal solutions. For SHE, PSO converges reliably without
requiring derivatives, although generally with higher computational effort than Newton-based
methods.

1.4 Numerical Experiments

Numerical tests were conducted to evaluate convergence speed, residue accuracy, and compu-
tational cost under a uniform tolerance of 10−10 and a maximum of 100 iterations for each
method.

1.4.1 Implementation Details

All algorithms were implemented in MATLAB (R2022b) on a 3.0GHz Intel Core i7 PC with
16GB RAM. Each method was given:

� Tolerance: ϵ = 10−10

� Max. iterations: 100

� Performance metrics: CPU time (in seconds), iteration count, and the final residue
∥F(x∗)∥

For monovariable approaches (Newton, Modified Newton, Ehrlich-Aberth), we used the uni-
variate polynomials derived from the Gröbner factorization; for multivariable methods (Newton
System, Newton+DE, PSO), the full system F(x) = 0 was directly solved.
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1.4.2 Comparison of Methods

Table 1.1 summarizes the key results. Reported values represent median performance over
multiple trials with different initial guesses:

Table 1.1: Comparative Performance of Iterative Methods

Method Iterations Order CPU Time (s) Final Residue

Newton Mono 5–9 2 0.6–0.7 ∼ 10−13

Modified Newton 4–8 3 0.08–0.09 ∼ 10−12

Ehrlich-Aberth 5–27 3 0.7–0.8 ∼ 10−15

Newton System 6–8 2 0.003–0.004 ∼ 10−16

Newton + DE 250+2 2 0.18–0.20 ∼ 10−11

PSO 100+ – 0.04–0.05 ∼ 10−11

Key observations:

� Newton-based methods (monovariable or multivariable) yield rapid convergence and mini-
mal residue when the initial guess is sufficiently close.

� The Hybrid Newton+DE approach consistently finds good initial guesses, proving robust
under parameter mismatches.

� PSO, although derivative-free and more global, requires a larger iteration count and thus
higher overall computational effort.

1.5 Conclusions

Numerical experiments reveal that multivariable Newton-Raphson converges most rapidly for
real-time Selective Harmonic Elimination, provided a suitable initial guess is available. In sce-
narios where the starting point is unknown or subject to uncertainty, the hybrid Newton+DE
approach offers robust global exploration followed by fast local refinement. Traditional mono-
variable Newton-type methods are practical for reduced systems or when Gröbner-based fac-
torization yields tractable polynomial factors. Particle Swarm Optimization remains a useful
alternative for highly nonlinear or parameter-uncertain models, albeit with higher computational
expense.
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