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Plaza del Hospital, 1, 30202, Cartagena (Murcia), SPAIN

ABSTRACT
This abstract presents a formulation of multidimen-
sional deformable models from a d-dimensional general-
ization of Liang et al., using B-splines as shape function
and a frequency-based formulation. The convergence of
theses models is analyzed showing that it depends of
the dynamic parameters of the model and the spectral
characteristics of the data. This result allows us to apply
the frequency formulation to multidimensional data,
as an efficient iterative system in matrix form in sev-
eral applications such as fast segmentation and motion
tracking of d-dimensional objects with non-rigid motion
or deformation.

A dynamic deformable model is defined as a para-
metric hypersurface in Rd, v(s, t), where s ≡ [s1, . . . , se]
with e 6 d − 1, is the vector of the parametric variables
of the space domain. The model is governed by an en-
ergy functional E(v) = S(v)+P(v). The first term is the
internal deformation energy,

S(v) =
1
2

d∑

l=1

(∫

Ω

α(s) ‖∇vl(s)‖2 + β(s) |∆vl(s)|2 ds
)

(1)
where α and β control the elasticity and the rigidity in
any coordinate s of the model. The term P(v) contains
the rest of energies applied to the model.

According to the variational calculus, the model v(s)
that minimizes E(v) must satisfy the Euler-Lagrange (E-
L) equations, which produce a set of d decoupled partial
differential equations, µ(s)∂ttv(s, t) + γ(s)∂tv(s, t)−∇ ·(
α(s)∇v(s, t)

)
+ ∆

(
β(s)∆v(s, t)

)
= q

(
v(s, t)

)
where q,

µ and γ represent the external forces, and the mass and
the damping density of the model respectively.

By applying a spatial discretization by means of finite
elements v = f ~ u, and using B-splines as shape func-
tion f , the Garlekin’s method allow us to transform the
E-L equations of motion in a set of d second-order par-
tial differential equations (PDE), Mdttui(t) + Cdtui(t) +
Kui(t) = qi(t), where ui are the nodes of the model for
the dimension i reshaped to a column vector, M, C and
K are the matrices of the model and qi represents the
external forces.

For a practical implementation, the time is dis-
cretized uξ = u(ξ∆t), and the time derivatives of u
are replaced by their discrete approximations. Thus,
the system can be rewritten as, η−1 (ηf + k) ~ uξ =
a1 f ~ uξ−1 + a2 f ~ uξ−2 + η−1qξ−1, where ~ indicates
e-dimensional circular convolution. η, γ, a1 and a2 are
constants obtained from the model parameters.

The discrete spatial domain n is translated into the
frequency domain ω. This allows us to isolate the nodes,
ûξ = ĥ(a1ûξ−1 + a2 ûξ−2 + (ηf̂)−1q̂ξ−1) where û and
q̂ are the DFT ’s of their respective spatial sequences.
ĥ = 1/(1 + k̂/(ηf̂)) is an e-dimensional low-pass filter,
inverse of the high-pass filter k̂. This equation provides
an efficient formulation because it is applied to each fre-
quency component of the model independently.

To evaluate the stability and convergence condi-
tions towards the final situation, a reduction of order
in the system is applied. By defining Ûξ = [ûξ ûξ]>,
Ĥ = [a1ĥ a2ĥ ; 1 0] and Q̂ξ−1 = [q̂ξ−1/ηf̂ 0]>, the sys-
tem equation can be collected as Ûξ = Ĥξ−1 · Ûξ + Q̂ξ−1.
Then, we study the the residual error Êξ = Ûξ − Û,
assuming that Q̂ξ−1 = Q̂ and that Ûξ → Û∞ = Ûξ.
Thereby, Êξ can be calculated as Êξ = Ĥ · Êξ−1. The
matrix Ĥ is diagonalized using its decomposition Ĥ =
L̂D̂L̂−1 where D̂ are the diagonal matrix with the eigen-

values λ̂1,2 = a1ĥ
2 ± 1

2

√
a2
1ĥ2 + 4a2ĥ. By applying the

Z transform it is simple to deduce that these eigenval-
ues match the poles of the system for each frequency
component ω, p̂1,2 = λ̂1,2.

Since iterative methods converge if and only if the
spectral radius of the iteration matrix is strictly less than
the unity, we have to ensure that |p̂1,2| < 1 ∀ω. On the
other hand, depending on the sign of the discriminant
∆ = a2

1Ĥ
2 +4a2Ĥ, the resulting convergence of each fre-

quency component can be underdamped (∆ < 0), criti-
cally damped (∆ = 0) of overdamped (∆ > 0). The slow-
est convergence mode corresponds to frequency compo-
nent with the largest pole in absolute value. So, the con-
vergence can be optimized for a specific spectrum band,
setting the parameters of the model for these frequen-
cies as critically damped mode. Given certain values for
α, β, µ and ω, the parameter γ̂c that provides critically
damped mode is γ̂c = − 2

ĥ
(ĥ− 1−

√
1− ĥ).

These results allow the use of the d-dimensional de-
formable models in the characterization of multidimen-
sional data. As the described formulation allows an it-
erative process for each frequency component indepen-
dently, this system can be applied efficiently to models
of any dimension. Moreover, the convergence results
support the optimization of the iterative process based
on the frequency band of the multimensional data to be
characterized.


