On doubly quasi-stochastic combined matrices

B. Cantó^{\flat},¹ R. Cantó^{\flat} and A.M. Urbano^{\flat}

(b) Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València Camí de Vera s/n, València, Spain.

Abstract

A matrix $U = (u_{ij}) \in \mathbb{R}^{n \times n}$ is said to be a doubly quasi-stochastic matrix if $\sum_{i=1}^{n} u_{ij} = 1$, for all j = 1, 2, ..., n and $\sum_{j=1}^{n} u_{ij} = 1$, for all i = 1, 2, ..., n. The combined matrix of a nonsingular matrix A is the matrix $C(A) = A \circ A^{-T}$ where \circ means the Hadamard (entrywise) product, and A^{-T} is the inverse transpose $(A^T)^{-1}$ of A.

Combined matrices have many applications in science, for instance in chemical and in control theory, they are called relative gain array (RGA), see [1, 2, 5]. It is easy to prove that the combined matrices are doubly quasi-stochastic matrices.

In [4] the authors studied the problem of characterizing when three real numbers u_{11} , u_{22} and u_{33} , are the diagonal entries of a 3×3 combined matrix U in various classes of matrices. In particular, they consider the class of totally positive matrices which all their minors are positive, (see [3, 6] and the references therein). Now, in this work we try to extend the characterization when nine real numbers u_{ij} , $1 \le i, j \le 3$ are given as the entries of a doubly quasi-stochastic matrix U, such that, U = C(A) where A is a totally positive matrix.

Acknowledgements: T his research was partially supported by the Generalitat Valenciana under the grant CIAICO/2021/162.

References

- Bristol, R., On a new measure of interaction for multivariable process control Automatica, 123–134, 1996.
- [2] Chiu, M.S., A methodology for the synthesis of robust decentralized control systems [dissertation]. Georgia Institute of Technology, Atlanta GA, 1991.
- [3] Fallat, S.M., Johnson, C.R., Totally Nonnegative Matrices, Princeton, 2011.
- [4] Fiedler, M., Markham, T.L., Combined matrices in special classes of matrices *Linear Algebra and its* Applications, 435:1945–1955, 2011.
- [5] Hovd, R., Skogestad, S., Sequencial Desig of Descentralized Controller Automatica, 30(10):1601–1607, 1994.
- [6] Peña, J.M., On nonsingular sign regular matrices Linear Algebra and its Applications, 359:1–3, 2003.

¹bcanto@mat.upv.es