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Abstract

Chebyshev polynomials of first kind Tn(x) are defined explicitly as

Tn(x) =

[n
2
]∑

k=0

(
n
2k

)(
x2 − Ir

)k
xn−2k , n ≥ 0,

or using the following three-term-recurrence formula:

T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1


Some properties of this type of polynomials can be found in references [1, 2].

On the other hand, the well-known matrix exponential eA, A ∈ Cn×n, appears in different prob-
lems of applied mathematics, physics, and engineering, see [3] and, for instance, in the solution
of systems of linear constant coefficient ordinary differential equations. Several state-of-the-art
algorithms have been provided for approximating eA, see for example [4] and references therein.

In this work, we have developed the proposed method in [5] to compute the matrix exponential
by using an approximation based on Chebyshev’s polynomials. We have performed numerical
experiments comparing implementations based on this algorithm with other ones of the state of
the art [4]. It can be observed that, in general, these new implementations present higher accuracy
than the other methods for the tests.
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