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Abstract

Recently, a new technique was introduced in [1] for the solution of a stiff IVP. Firstly, the ODE
system is modified as follows:

yr = Tp(k1) [ (8 9(1)), T, € LRLRY), f:RxRI=RY tet,T]. (1.1)
y(to) = wo,

Then, an explicit RK method of order p is applied to the modified problem (1.1). The linear
operator T, called TASE operator, is a function of the product £.J, where J is the Jacobian of f
evaluated at the current time grid-point. 7}, can also depend on one or more free real parameters
to be set in such a way that the used explicit RK method stably and accurately solves the modified
ODE system (1.1).

To preserve the order of the explicit RK method, the operator 7}, must satisfy the property
T, = I+O(kP), where [ is the identity matrix of order d. In fact, in this way, the exact solution of the
perturbed problem (1.1) differs from that of the original one of O(kP). Therefore, applying a method
of order p to the perturbed ODE system (1.1) leads to a numerical solution that approximates with
order p the exact one of the original IVP, i.e. ||u(t,) — yn|| = O(KP).

A new family of RK-TASE methods was developed by Montijano et al. in [2], calculating
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The extended family of TASE operators (1.2) involves p free real parameters o, j = 1,...,p. The

values of the coefficients 3;, j = 1,...,p, are a-priori fixed to get order p for the TASE operator,

since the Taylor series expansion near zero of (1.2) is given by

p
T, =1+ KkPJP + O(RP), K, =) Bl

In this work, we will study the numerical stability of the proposed family of RK-TASE methods
for the linear problem
= (A+ B)y, (1.3)

when A and B do not necessarily commute and T),(kA) depends only in A (not J the Jacobian), in
a similar way as it was done in [3, 4]. This is a first step to analyze the stability for some particular
nonlinear parabolic problems.
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