Dynamical systems and entropy: state of research

Ioan C. Micó^{1,*}

(1) Institut Universitari de Matemàtica Multidisciplinar (IM2) Universitat Politècnica de Valéncia ciutat de Valéncia, Valéncia (Spain)

Abstract

The objective of the article is to introduce the entropy and the temperature in the context of abstract dynamical systems. Then, I present the state of research of this objective. Concretely, let $q_k(t)$, k=1, 2, ..., *n*, be the abstract variables of a dynamical system, with $q = (q_1, q_2, ..., q_n)$, with its Dirac's Hamiltonian [1] :

$$\dot{q}_k(t) = f_k(t, q) \; ; \; k=1, 2, ..., n$$
 (1)

$$H(t, \boldsymbol{q}, \boldsymbol{p}) = \sum_{j=1}^{n} f_j(t, \boldsymbol{q}) \cdot p_j - \sum_{j=1}^{n} f_j(t, \boldsymbol{q}) \cdot g_j(t, \boldsymbol{q}) + h(t, \boldsymbol{q})$$
(2)

In (2) p_i are the canonical moments, and the functions $g_i(t, q)$ and h(t, q) are given by equations presented in [2]. However, the hypotheses stated in [2] to introduce the entropy S(t, q) and the temperature T(t, q) do not drive to any concluding result. Therefore, the approach must be changed by stating different hypotheses: 1. By introducing a new equation as the entropy time derivative $\dot{S}(t, q)$; 2. Following hamiltonian Dirac's approach, the system dimension *n* of (1) must be even, then, if *n* is odd, considering $\boldsymbol{q} = (q_1, q_2, ..., q_n, S), N = n + 1$, the $\dot{q}_N = \dot{S}(t, \boldsymbol{q}) = f_N(t, \boldsymbol{q}, S)$ equation is added, and if *n* is even, considering $\boldsymbol{q} = (q_1, q_2, ..., q_n, q_{n+1}, S)$, N = n + 2, the $\dot{q}_{n+1} = 0$ and $\dot{q}_N = \dot{S}(t, \boldsymbol{q}) = f_N(t, \boldsymbol{q}, S)$ equations are added; 3. Eq. (2) is simplified by considering that $h(t, \boldsymbol{q}) = \sum_{j=1}^N f_j(t, \boldsymbol{q}) \cdot g_j(t, \boldsymbol{q})$, that is:

$$H(t, \boldsymbol{q}, \boldsymbol{p}) = \sum_{j=1}^{N} f_j(t, \boldsymbol{q}) \cdot p_j = \sum_{j=1}^{N-1} f_j(t, \boldsymbol{q}) \cdot p_j + f_N(t, \boldsymbol{q}, S) \cdot p_N$$
(3)

I assume in (3) that the Hamiltonian is the corresponding generalized internal energy of the dynamical system. Then, the temperature is defined as in the Thermodynamics context $T(t, q) = \frac{\partial H}{\partial s} =$ $\frac{\partial f_N(t,\boldsymbol{q},S)}{\partial f_N(t,\boldsymbol{q},S)}p_N.$

In addition, the equations for the $g_i(t, q)$ functions become from those presented in [2] as:

$$\frac{\partial g_j(t,\boldsymbol{q})}{\partial t} + \sum_{l=1}^N \frac{\partial g_j(t,\boldsymbol{q})}{\partial q_l} f_l(t,\boldsymbol{q}) = -\sum_{l=1}^N \frac{\partial f_l(t,\boldsymbol{q})}{\partial q_j} g_l(t,\boldsymbol{q}) \quad ; \quad j = 1,2,\dots,N$$
(3)

Moreover, applying a Gibbs-Duhem generalized equation, it provides a new equation, which coincides with the differential form for the generalized internal energy, that is:

$$g_N(t,\boldsymbol{q})\sum_{l=1}^N \frac{\partial f_N(t,\boldsymbol{q},S)}{\partial q_l} f_l(t,\boldsymbol{q}) = -\sum_{j=1}^{N-1} \sum_{l=1}^{N-1} \frac{\partial f_j(t,\boldsymbol{q})}{\partial q_l} g_j(t,\boldsymbol{q}) \cdot f_l(t,\boldsymbol{q})$$
(4)

The internal energy of the classical reversible Thermodynamics is deduced. Thus, good way.

References

[1] Dirac, P. A. M., Lectures on Quantum Dynamics. New York, Belfer Graduate School of Science, Yeshiva University, 1964.

[2] Micó, J C., Modelling for Engineering & Human Behaviour 2002. Ciutat de Valéncia, Universitat Politècnica de Valéncia, 2022.