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Abstract

If a function f : C → C is assumed to be analytic in a sufficiently large domain, there are well-
established ways to generalize it to a matrix function f : Cn×n → Cn×n:

F = f(A). (1.1)

Several formal definitions exist, each with slightly different assumptions, but all are consistent for
a broad class of functions and matrices. A crucial area within the field of numerical linear algebra
is the computation of F in various settings. This proposal concerns the computation of matrix
functions and their generalizations. The most well-known example of a non-trivial matrix function
is the matrix exponential: f(A) = exp(A). It represents a closed form of the solution of a system
of linear ordinary differential equations, with arbitrary initial conditions. Its direct computation is
extensively used in systems and control, data science, and in general natural science where modeling
with partial differential equations plays an important role.

Many numerical methods for evaluating a function f(A) at an n×n matrix A can be based on a
variety of different approaches, but for a large class of algorithms, the matrix f(A) is approximated
using only three operations: 1) C = αA+βB, 2) C = AB, 3) C = A−1B. This includes the scaling-
and-squaring algorithm, which is the computational method most commonly used for the matrix
exponential (for example, in the MATLAB command expm). Rephrasing these methods as directed
acyclic graphs (DAGs) is a particularly effective approach to study existing techniques, improve
them, and eventually derive new ones, which is illustrated in [1]. The accuracy of these matrix tech-
niques can be characterized by the accuracy of their scalar counterparts, thus designing algorithms
for matrix functions can be regarded as a scalar-valued optimization problem. The derivatives
needed during the optimization can be calculated automatically by exploiting the structure of the
DAG, in a fashion analogous to backpropagation. This paper describes GraphMatFun.jl, a Julia
package that offers the means to generate and manipulate computational graphs, optimize their
coefficients, and generate Julia, MATLAB, and C code to evaluate them efficiently at a matrix
argument. The software also provides tools to estimate the accuracy of a graph-based algorithm
and thus obtain numerically reliable methods. For the exponential, for example, using a particu-
lar form (degree-optimal) of polynomials produces implementations that, in many cases, are more
computationally efficient than the Padé-based techniques typically used in mathematical software.
The optimized graphs and the corresponding generated code are available online.
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