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1 Introduction

Positron emission tomography (PET) is a functional medical imaging technique that allows the ex-
traction of information from biological processes (or functional), such as blood flow or metabolism.
To be able to do this, a radiotracer is injected into the patients body, usually fluorodeoxyglucose-18
(FDG) that is a glucose analog with the radionuclide fluorine-18 that naturally emits positrons.
This type of medical image technique is widely used in oncology as usually cancerous cells or tumors
uptakes high quantities of glucose and thus are easily detected as a region with elevated activity
by the PET scanner.

Positron emission tomography (PET) data acquisition is based on the detection of two 511 KeV
annihilation photons that originate from the use of FDG positron emission. Usually prior to the
first clinical use of a scanner it must be calibrated using an imaging phantom (or just phantom)
that it is a device that simulates an standardized body and is used to evaluate, analyze and tune
the detector.

The obtained data from a PET scan has to be reconstructed, there exist a multitude of recon-
struction algorithms, traditionally reconstructions were performed using non-iterative methods such
as the Inverse Radon Transform, Filtered Back Projection (FBP) and in more recent years, there
was a shift into iterative reconstruction algorithms such as in Maximum Likelihood Expectation
Maximization (MLEM) or Ordered Subset Expectation Maximization (OSEM) that reconstruct
the data into a 3D image space that represents the real physical object that has been detected by
the system.

There has been advancements in the field of Artificial Intelligence (AI) with the development
of artificial neural networks that have enabled multiple uses in a wide range of industries. The use
of AI systems has also been adopted in medical imaging, therefore in PET imaging reconstruction
state of the art there has been an adoption of Convolutional Neural Networks (CNNs) in order
to perform the reconstruction from data obtained by the scanner as input for the Neural Network
and to obtain the reconstructed image [1],[2] One of the main drawbacks of the use of Neural
Networks is that they require a large amount of images in order to train the neural network so it
can reconstruct the data to the real image space.

To address this problem, it is our intent to generate programmatically different types of medical
phantom images that will be later used to train a neural network reconstructor of PET images. In
our case as the phantoms will be generated via programming and to validate our results we will
simulate the data acquisition step using a Monte Carlo simulation software called GATE.[4]
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2 Methods

To generate the synthetic phantoms a pipeline was developed using Python[5] that allowed the
tuning of several parameters of the geometries of different phantoms, in order to generate likewise
phantoms, that were similar to the standardized ones used in the scanners calibration.

In the following table it is shown some of the most widely used phantoms in PET imaging:

Phantom name
Main

geometry
Secondary
geometry

Number of secondary
geometries

NEMA Cylinder Cylinder 6

Jaszczak Cylinder Sphere 6

Derenzo Cylinder Cylinder 116

Shepp-Logan Ellipse Ellipse 10

Table 1: Types of phantoms and geometries

In figure 1 can be seen some samples of the mentioned phantoms:

Figure 1: Phantoms: a) NEMA , b) Jaszczak, c) Derenzo , d) Shepp-Logan

Considering the differences of each phantom the goal was to generate 3D voxelized phantoms,
modifying the original shapes, sizes and positions of the secondary geometries within each generated
phantom. In the next subsections will explain the particularities and processes implemented to
generate these phantoms.

2.1 Nema-like phantom

A standard Nema NU 4 [6] phantom is made up of a main geometry that is cylinder that contains
as a secondary geometry 6 smaller cylinders in a radial disposition from the center of the phantom
of different sizes. This phantom is used for the image quality assessment in small animal imaging
PET scanners and it is widely used to compare the differences between PET systems. Some of
the parameters that can be evaluated are count rate performance, scatter fraction, sensitivity and
spatial resolution.
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In order to generate this type of phantom the following parameters will be considered:

Phantom
name

Main
geometry

Parameter Tuneable Range Secondary
geometry

Parameter Tuneable Range

NEMA Cylinder

Radius (mm) Yes 30 - 60

Cylinder

Radius (mm) Yes Depends on number
of geometries

Heigth (mm) Yes 20 - 50 Heigth (mm) No

Number Yes 3 - 8

Table 2: Nema parameters

In the standard Nema phantom, the secondary cylinders inserted into the main cylinder have
to be equidistant. As a consequence of this, in order to develop a NEMA-like phantom in which
the number of secondary cylinders is modified, it will be needed to split the main cylinder into
sectors and then in order to avoid overlapping of the secondary cylinders, calculate the maximum
radius that could fit in a circular sector, as the radius of the secondary cylinders also will be tunable.

The procedure to generate a NEMA-like phantom was:

• Select randomly the tunable parameters of the main cylinder and the number of secondary
cylinders.

• Considering the number of secondary cylinders split the main cylinder in sectors and calculate
the maximum radius in a circular sector.

• Select randomly the tunable parameters of the secondary cylinders.

• Generate an empty array with the dimensions of the phantom image to generate

• Iterate through the array considering the voxelized coordinates of the main cylinder and sec-
ondary cylinders to assign an activity value, being the higher activity values in the secondary
cylinders.

2.2 Jaszczak-like phantom

The jaszczak phantom is made up of a main geometry of a cylinder and the secondary geometries
of 6 spheres in the same disposition as the NEMA phantoms. This phantom is generally used for
the evaluation of the spatial resolution, sensitivity, image uniformity and attenuation correction
accuracy.
The parameters that will be tuned during the generation are:

Phantom
name

Main
geometry

Parameter Tuneable Range Secondary
geometry

Parameter Tuneable Range

Jaszczak Cylinder

Radius (mm) Yes 30 - 60

Sphere

Radius (mm) Yes Depends on number
of geometries

Heigth (mm) Yes 20 - 50 Heigth (mm) No

Number Yes 3 - 8

Table 3: Jaszczak parameters

The procedure to generate a Jaszczak-like phantom was:

• Select randomly the tunable parameters of the main cylinder and the number of secondary
spheres.
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• Considering the number of secondary spheres split the main cylinder in sectors and calculate
the maximum radius in a circular sector.

• Select randomly the tunable parameters of the spheres.

• Generate an empty array with the dimensions of the phantom image to generate

• Iterate through the array considering the voxelized coordinates of the main cylinder and
secondary spheres to assign an activity value, being the higher activity values in the spheres.

2.3 Derenzo-like phantom

The Derenzo phantom is made up of a main geometry being a cylinder and the secondary geometries
being a series of smaller cylinders. The main difference with the NEMA-like phantom is that the
secondary geometries, instead of being single cylinders, these are a series of cylinders arranged
according to a figurate number being based on the triangular number. As such each sector of the
main geometry will contain an increasing the number of secondary cylinders accordingly to the
progression of the triangular numbers. Following the formula:

Tn ≡
n∑

k=1

=
1

2
n(n+ 1) =

(
n+ 1

k

)
(1)

Being
(
n
k

)
a binomial coefficient.

This phantom is used for the evaluation of the imaging system resolution by measuring the full
width half maximum (FWHM) between the secondary cylinders, as the series of smaller cylinders
within each sector always have the same radius and are equally distanced between them. The
parameters that will be tuned during the generation are:

Phantom
name

Main
geometry

Parameter Tuneable Range Secondary
geometry

Parameter Tuneable Range

Derenzo Cylinder

Radius (mm) Yes 40 - 60

Cylinder

Radius (mm) Yes Depends on number
of geometries

Heigth (mm) Yes 20 - 50 Heigth (mm) No

Number Yes 3 - 7

Table 4: Derenzo parameters

The procedure to generate a Derenzo-like phantom was:

• Select randomly the tunable parameters of the main cylinder and the number sectors to split
the main cylinder.

• Considering the number of sectors and following the triangular number calculate the number
of cylinders that each sector will contain.

• Select the radius of each cylinder, considering the number of cylinder to fit in each sector.

• Generate an empty array with the dimensions of the phantom image to generate

• Iterate through the array considering the voxelized coordinates of the main cylinder and
secondary spheres to assign an activity value, being the higher activity values in the spheres.
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2.4 Shepp-Logan-like phantom

The Shepp-Logan phantom is a mathematically defined phantom that is made up of a main ge-
ometry being an ellipse and the secondary geometries another set of ellipses. It resembles the
anatomical structures of the human torso, considering organs such as the lungs, heart or liver.
This kind of phantoms are used to characterize the detector spatial resolution, noise characteris-
tics, artifact generation or contrast resolution.

The parameters that will be tuned during the generation are:

Phantom name Main geometry Parameter Tunable Secondary geometry Parameter Tunable

Shepp-Logan Ellipse
Major Axis Yes

Ellipse
Major Axis Yes

Minor Axis Yes Minor Axis Yes
Number Yes

Table 5: Shepp-Logan parameters

In this instance the ranges had not being included as a major and minor axis of the phantom
are selected at random, with the condition that it does not exceed the dimensions of the voxelized
image.
The procedure to generate a Shepp-Logan-like phantom was:

• A range of the major and minor axis values is generated for each ellipse, considering to avoid
overlapping between the different secondary ellipses

• Calculate the voxelized coordinates of each ellipse.

• Generate an empty array with the dimensions of the phantom image to generate.

• Iterate through the array considering the voxelized coordinates of the main ellipse and sec-
ondary ellipses to assign an activity value, being the higher activity values in the spheres.

2.5 Validation of the synthetically generated phantoms

Once the different phantoms generators were developed the subsequent pipeline was developed to
check the proper functioning of the generator of phantoms.

• Generate several voxelized phantoms, tuning the parameters in each type of phantom within
the set ranges for each phantom.

• Simulate a PET acquisition using a Monte Carlo simulation software.

• Using the MLEM iterative reconstruction algorithm, reconstruct the images from the acquired
data.

• Visually compare the images of the voxelized phantoms against the reconstructions.

3 Results

In the figure 2 can be seen some examples of the generated phantoms, in all the cases can be seen
for each type of phantom that quantitatively the images from the left are the same that the ones
on the right. In all the generated voxelized images can be observed that the regions marked as
yellow, that correspond to the regions of high activity, are also correctly reconstructed after the
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PET acquisition simulation as both images are similar and validates our results.

The phantoms were simulated using the UPV Rigel cluster, as the Monte Carlo simulations
are computationally expensive and it required vast CPU computation time in order to validate the
results. The simulation of the phantoms shown in the figure 2 required approximately 1700 hours,
the data processing took 5 hours and the reconstruction 3.5 hours, for all phantoms.

Figure 2: Phantoms: a) NEMA-like voxelized and reconstruction, b) NEMA-like voxelized and
reconstruction, c) NEMA-like voxelized and reconstruction, d) NEMA-like voxelized and recon-
struction

4 Conclusions

As a conclusion it has been proved that implemented phantom generator pipeline works well when
in comes to the systematically generation of synthetic phantoms and enables the creation of an
indefinite number of phantoms that could be used to generate the necessary images to train a
convolutional neural network geared towards the reconstruction of PET imaging reconstruction.
As the generated voxelized images and the reconstruction from the simulation results in images
that represent the same phantom and these have similar geometries and characteristics as the
standardized phantoms used for the calibration of PET scanners.
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