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1 Introduction

In Science and Engineering, many challenging problems require the solution of nonlinear equations
of the form

R(p) = 0, (1)

where R : Ω ⊂ P → Q be continuous Fréchet differentiable operator in an open convex domain Ω
of the Banach space P to Q. This equation can represented in the form of an integral equation,
differential equation, or a system of nonlinear equations (see [1]). Since exact solutions to nonlinear
equations are rarely found in the literature, so we apply iterative methods to approximate their
solutions. One common approach is the fixed-point method [3] in which we rewrite equation (1) as
p = H(p) with H(p) = p−R(p). If H : G → G is a contraction in convex and compact subset G of
Banach space P, then the sequence generated by

pk+1 = R(pk), k ≥ 0

converges to a unique fixed point. This approach possesses two remarkable characteristics: it
exhibits global convergence within G and ensures the presence of a fixed point. We can not achieve
both properties simultaneously in any other iterative method but fixed point method offers a linear
convergence rate. The most popular quadratically convergent Newton’s method

p0 ∈ Ω, pk = pk−1 − [R′(pk−1)]
−1R(pk−1), k ∈ N,

and its variants [8, 11] are applied for approximating the solution because of its low computational
cost. Notice that we generally analyze the convergence in two ways : local [10] and semilocal
convergence [9]. In local convergence, we require condition on p∗, the operator R and obtain the
convergence ball B(p∗, R) in which the sequence converges starting from any point in the domain.
On the other hand, in semilocal convergence, we require condition on p0, the operator R and
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obtain the existence ball B(p0, R) which guarantee the existence of p∗ in the ball. Arroyo et al. [2]
presented convergence analysis of fifth order iterative method given by

p0 given in Ω,

qk = pk − ΛkR(pk),

rk = qk − 5ΛkR(qk),

pk+1 = rk − 1
5Λk(−16R(qk) +R(rk)), k ≥ 0,

(2)

where Λk = [R′(pk)]
−1. The beauty of method (2) is that it requires only first order Frèchet

derivative same as Newton’s method but having fifth order convergence.
Now a days, various authors combine local and semilocal convergence with the help of auxiliary

point p̃. For this, we require the condition on auxiliary point ( see [4, 5, 6]) and the operator
R provides the existence ball as well as the domain in which sequence converges starting from
any point in this domain. This is known as restricted global convergence. By using auxiliary
points, Ezquerro and Hernández [4] obtained the global convergence domain for Newton’s method,
considering a Lipschitz condition on the first derivative. In [6], they further extended this approach
for Chebyshev’s method under Lipschitz condition onR”. Ezquerro et al. [7] established the domain
of global convergence for the family (2) under Lipschitz condition on R′. Yadav and Singh [12]
extended the domain of global convergence of method (2) under the Lipschitz condition on R′. The
results established in [12] are not applicable for the following nonlinear Hammerstein type integral
equations

p(υ) + λ

m∑
i=1

∫ b

a
Ki(υ, θ)Mi(p(θ))dθ = f(υ), υ ∈ [a, b]

where, f,Mi,Ki for i = 1, 2, ...,m are known and we have to determine a solution p∗. Equation (1)
is equivalent to

G(p)(υ) = p(υ) + λ

n∑
i=1

∫ b

a
Ki(υ, θ)Mi(p(θ))dθ − f(υ).

In this case, for each y ∈ Ω, we have

[G′(p)y](υ) = y(υ) + λ
n∑

j=1

∫ b

a
K(υ, θ)M ′

j(p(θ))y(θ)dθ = y(υ) + λ

∫ b

a
K(υ, θ)

n∑
j=1

M ′
j(p(θ))y(θ)dθ

and, if each M ′
j is Hölder continuous, then using max-norm, we can obtain

∥G′(p)−G′(q)∥ ≤
n∑

j=1

Nj∥p− q∥νj , Nj ≥ 0, νj ∈ [0, 1], for all p, q ∈ Ω.

Although the Lipschitz and Hölder’s conditions do not hold, the ω-condition is satisfied.
Our main objective is to conduct a global convergence analysis of the fifth-order iterative method

(2) under the ω-condition on R′. Our research holds significance as it addresses scenarios where
the Lipschitz condition may not hold, but the ω-condition is satisfied. Additionally, we explore
theorem of existence and uniqueness, as well as the domain of global convergence for the solution.
In order to establish the convergence theorems, we will construct the following Lemma’s.

Lemma 1. Consider R : Ω ⊆ P → Q be a continuous twice differentiable operator of the Banach
space P to Q. In consequence, we obtain

(i) R(p0) = R(p̃) +R′
(p̃)(p0 − p̃) +

p0∫̃
p

(R′
(p)−R′

(p̃))dp, with p0 ∈ Ω.
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(ii) R(qk) =
1∫
0

(R′
(pk + τ(qk − pk))−R′

(pk))(qk − pk)dτ , with pk, qk ∈ Ω.

(iii) For qk, pk+1 ∈ Ω, it follows

R(pk+1) = R(qk) +R′
(qk)(pk+1 − qk) +

pk+1∫
qk

(R′
(p)−R′

(qk))dp.

(iv) For pk, qk, rk ∈ Ω, it follows

9

5
R(qk) +

1

5
R(rk) =

4

5

1∫
0

(R′
(pk + τ(qk − pk))−R′

(pk))(qk − pk)dτ

+
1

5

1∫
0

(R′
(pk + τ(rk − pk))−R′

(pk))(rk − pk)dτ.

(v) For pk ∈ Ω, it follows

R(pk) + (p̃− pk)R
′
(pk) = R(p̃)−

p̃∫
pk

(R′
(p)−R′

(pk))dp.

Furthermore, let’s assume ∃ ρ > 0 such that p ∈ B(p̃, ρ) ⊂ Ω, and

βω̃(ρ) < 1. (3)

Let b0 =
βω(µ)

1− βω̃(ρ)
and define a real positive sequence {bk} such that

bk+1 = ϕ(bk)
υbk, k ≥ 0, (4)

ϕ(p) =

(
p

1 + υ
+ (1 + p)ξ(p)

( p

1 + υ
ξ(p)1+υ

))
(5)

and

ξ(p) =

(
4p

5(1 + υ)
+

p

5(1 + υ)

(
1 +

5p

1 + υ

)1+υ
)

(6)

As, ∥I − Λ̃R′
(u)∥ ≤ ∥Λ̃(R′

(p̃)−R′
(p))∥ ≤ βω̃(ρ) < 1. Using Banach Lemma, we deduce

∥Λ∥ = ∥[R′
(p)]−1∥ ≤ β

1− βω̃(ρ)
= d, (7)

and ∥ΛR′
(p̃)∥ ≤ 1

1− βω̃(ρ)
. (8)

Lemma 2. For t > 0, ϕ(t) and ξ(t) are increasing functions defined by (5) and (6). If b0 < 0.2287
then ϕ(b0) < 1, ξ(b0) < 2b0 and the sequence {bk} is decreasing.

Lemma 3. For the real valued functions ϕ(p) and ξ(p) defined by (5) and (6), if there exists ρ > 0
such that the condition (3) and

5b0µ

(1 + υ)
+

(1 + υ)η + βρω(ρ)

(1 + υ)(1− βω̃(ρ))
≤ ρ. (9)

satisfied, then the following recurrence relation true for every k ≥ 1 :
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∥qk − pk∥ ≤ ϕ(bk)∥qk−1 − pk−1∥,

∥qk − p̃∥ ≤ (1 + υ)η + βρω(ρ)

(1 + υ)(1− βω̃(ρ))
,

∥rk − qk∥ ≤ 5

(1 + υ)
bk∥qk − pk∥,

∥rk − p̃∥ ≤ (1 + υ)η + βρω(ρ)

(1 + υ)(1− βω̃(ρ))
+

5

(1 + υ)
bkµ,

∥pk+1 − pk∥ ≤ (1 + ξ(bk))∥qk − pk∥, (10)

∥pk+1 − p̃∥ ≤ (1 + υ)η + βρω(ρ)

(1 + υ)(1− βω̃(ρ))
+ ξ(bk)

( n−1∏
i=0

ϕ(bi)

)
µ.

Theorem 1. For some p̃ ∈ Ω, assume ∃ ρ > 0 satisfying the conditions (3) and (9) for B(p̃, ρ) ⊂
Ω. If b0 < 0.2287, the iterative method provided by (2) is well-defined and converges to p∗ in
B(p̃, ρ) ⊂ Ω for each point p0 ∈ B(p̃, ρ).

Theorem 2. Under the conditions of Theorem 1, p∗ is unique in B(p̃, ρ∗) ∩ Ω, where ρ∗ is a

positive root of
2β

1 + υ
ω̃(ρ+ ρ∗)

(
1− 1

2(1+υ)

)
= 1.

We will also verify the above theoretical results on the nonlinear Hammerstein type integral
equations to show the applicabilty of our approach.
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