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1 Introduction

Problem solving in science and engineering, through the process of mathematical modeling, is one
major challenge in Numerical Functional Analysis. Under some assumptions, a particular problem
is modeled into a nonlinear equation in Banach spaces.

Let F be a nonlinear operator, F : D ⊆ X → Y , where X, Y are Banach spaces and D, the
domain of F , is an open convex subset of X. Obtaining the best approximation to the solution
of an equation F (x) = 0 is always the main goal in the study of an iterative method, but it is of
utmost importance to be certain that the chosen iterative method converges to this approximation.
In order to achieve a good output value and convergence of the method to the solution, we can
perform studies focused on the conditions that have to be fulfilled by the solution x∗, the initial
value x0 or the operator, using the iterative method.

In Banach spaces, local and semilocal convergence can be analyzed. When analyzing local con-
vergence (see [1], [3]), conditions are imposed on the operators and their derivatives at the solution
x∗. The result is the ball of local convergence, centered on the solution with radius r: B(x∗, r).
The elements within this ball are the potential initial estimates of the method from which we can
guarantee convergence, that is, the possible starting points for the method to work or for which the
limit of the iterates sequence is the solution of the problem. In addition, the error bound is obtained.

For the semilocal convergence analysis, conditions are imposed on the operators and their
derivatives at the initial estimate x0 and iterations are performed. As a result we obtain the exis-
tence and uniqueness of the solution, the R-order of convergence of the method, the a priori error
bounds and the convergence domain (within which the operator F is defined).

In this paper, we describe an iterative method and its local convergence analysis to solve the
nonlinear equation F (x) = 0 with solution x∗. Consider the family of iterative methods [2], defined
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for k = 0, 1, 2, . . . by
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where parameter α ∈ C and x0 is the initial estimate. The order of convergence of the scheme is 4.

We wish to solve the nonlinear equation F (x) = 0. It is assumed the existence of F ′(x) in a
neighborhood of the solution x∗ and F ′ (x∗)−1 ∈ BL(Y,X), where BL(Y,X) is the set of bounded
linear operators from Y to X.

2 Local convergence analysis

Cordero et al in [2], studied scheme (1) using complex dynamics tools, but a theoretical study of
local convergence was not carried out, which we consider quite important for the aforementioned
reasons. Next, we will proceed with this analysis.

2.1 Local convergence analysis using conditions (C1), (C2) and (C3)

Let B(w, ρ) y B(w, ρ) be the open and closed balls, respectively, in X, centered in w with radius
ρ > 0. For the local convergence analysis of (1), the following conditions are imposed on operators
(F, F ′) in the solution x∗, which is assumed to exist.

For the local convergence analysis, we assume the following conditions for real numbers L0 >
0, L > 0 and for all x, y ∈ D :

F (x∗) = 0, F ′ (x∗)−1 ∈ BL(Y,X)(C1) ∥∥∥F ′ (x∗)−1 (F ′(x)− F ′ (x∗)
)∥∥∥ 6 L0 ‖x− x∗‖(C2) ∥∥∥F ′ (x∗)−1 (F ′(x)− F ′(y)
)∥∥∥ ≤ L‖x− y‖(C3) ∥∥∥F ′ (x∗)−1 F (x)

∥∥∥ 6M, ∀x ∈ D for M > 1 real.(C4)

In order to perform the local convergence analysis of the method, it is suitable to define certain
functions and parameters. Define function g1 on the interval

[
0, 1

L0

[
by

g1(t) =
1

1− L0t

[
L

2
t+

1

3
(1 + L0t)

]
(2)

Now, consider the function h1(t) = g1(t)−1, then h1(0) = 1/3−1 = −2/3 < 0 and h1 (1/L0) =
+∞. Consequently, h1(t) has at least one root in ]0, 1/L0[ by the intermediate value theorem. Let
r1 the smallest root in ]0, 1/Lo[, it follows that

0 < r1 < 1/L0 y 0 ≤ g1(t) < 1, ∀t ∈ [0, r1[. (3)
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Moreover, define function g2 in the interval [0, r1[ by
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Consider the function h2(t) = g2(t)− 1. Following that g1(0) = 1
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From (3), we have that 1 + L0 r1 > 0 and 1− L0 r1 g1 > 0, and conclude that h2 (r1) > 0.

Consequently, h2(t) has at least one root in ]0, r1[. Let r be the smallest root in ]0, r1[, we have

0 < r < r1 < 1/L0 y 0 ≤ g2(t) < 1, ∀t ∈ [0, r[. (4)

Thus, for α ∈
]
−33

56
,
15

56

[
, 0 < r < r1 < 1/L0.

Let us consider the following lemma:

Lemma 2.1 If operator F satisfies (C2) and (C3), then the following inequalities hold, for all
x ∈ D and t ∈ [0, 1],∥∥∥F ′ (x∗)−1 F ′(x)

∥∥∥ 6 1 + L0 ‖x− x∗‖

‖F ′ (x∗)−1 F ′ (x∗ + t (x− x∗) ‖≤ 1 + L0‖x− x∗‖ (5)∥∥∥F ′ (x∗)−1 F (x)
∥∥∥ ≤ (1 + L0 ‖x− x∗‖) ‖x− x∗‖

Next, we provide the local convergence result for method (1), given the (C1) - (C4) conditions.
For Theorem (2.2), condition (C4) is dropped and the radius of the convergence ball is obtained
without using constant M .

Theorem 2.2 Let F : D ⊆ X → Y a differentiable Fréchet operator. Suppose that there exists
x∗ ∈ D y α ∈

]
−33

56 ,
15
56

[
such that (C2) and (C3) are satisfied and B(x∗, r) ⊆ D, where r is the

radius. The sequence x∗ generated by (1) for x0 ∈ B(x∗, r)−{x∗} is well defined for k = 0, 1, 2, . . .
remains in B(x∗, r) and converges to x∗. In addition, the following estimates hold k = 0, 1, 2, . . . :

‖yk − x∗‖ ≤ g1 (‖xk − x∗‖) ‖xk − x∗‖ ≤ ‖xk − x∗‖ ≤ r,

‖xk+1 − x∗‖ ≤ g2 (‖xk − x∗‖) ‖xk − x∗‖ ≤ ‖xk − x∗‖ ≤ r,

where the g functions are defined before Theorem (2.2). Furthermore, if R ∈
[
r, 2
L0

[
exists such

that B(x∗, R) ⊆ D, then the limit point x∗ is the only solution of equation F (x) = 0 in B(x∗, R).
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2.2 Local convergence analysis using condition (C4)

In the previous section we avoided the use of boundedness conditions, which sometimes is a disad-
vantage when solving practical problems. In this section, condition (C4) is applied, allowing us to
compare the radii obtained when using M with those obtained avoiding the use of M . The local
convergence analysis is hereby completed.

Theorem 2.3 Let F : D ⊆ X → Y de a differentiable Fréchet operator, L0 > 0, L > 0,M ≥ 1 and
α ∈

]
−33

56 ,
15
56

[
. Let x∗ ∈ D such that, for all x, y ∈ D, conditions (C1) - (C4) hold and, moreover,

it is verified that M < 3 and
[∣∣3

8 + α
∣∣+ |α|+

∣∣α
3

∣∣]M < 1. Then, the sequence x∗ is well defined
for x0 ∈ B(x∗, r) ⊆ D, for k = 0, 1, 2, . . . and converges to x∗. In addition, the estimates comply,
for each k = 0, 1, 2, . . . ,

‖yk − x∗‖ ≤ g1 (‖xk − x∗‖) ‖xk − x∗‖ ≤ ‖xk − x∗‖ ≤ r,

‖xk+1 − x∗‖ ≤ g2 (‖xk − x∗‖) ‖xk − x∗‖ ≤ ‖xk − x∗‖ ≤ r.

Furthermore, if there exists R ∈
[
r, 2
L0

[
such that B(x∗, R) ⊆ D, then the limit point x∗ is a unique

solution of the equation F (x) = 0 in B(x∗, R).

3 Conclusions

In this paper we have established local convergence analysis for a family of iterative methods in
Banach spaces under the assumption that the Fréchet derivative satisfies the Lipschitz continuity
condition. The radii of balls of convergence have been obtained.
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