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1 Introduction

Use of genetic algorithms (GA) in optimization problems is ubiquitous in mathematics [1, 2],
engineering [3] and other fields such as economics [4, 5, 6]. In most optimization problems, the
solution can be obtained by using numerical approximation techniques derived from the analytical
expressions of the conditions on the critical points of a function or by directly using algorithms
based on descent direction search techniques following different criteria. Several questions arise
when considering these techniques, one of which may be the existence of possible local minima or
the lack of knowledge of the geometry of the objective function and, therefore, of the behaviour
of the algorithms used. It is in this framework that non-deterministic optimization methodologies
appear and develop, in which the algorithms used do not offer the same results in each execution.

In exchange for this price to pay, these types of algorithms offer the possibility of obtaining
different local minima when executed several times, thus facilitating the effective finding of the
global minimum sought [7].

A large number of these techniques are available [8, 9, 10, 11], such as the stochastic ap-
proximation methods, stochastic gradient descent methods, simulated annealing, probability col-
lectives, cross-entropy method, random search and swarm and evolutionary algorithms. Genetic
algorithms(GA), initially popularized by Holland’s work in the 1970s [12], fall into the latter cate-
gory.

Their application is particularly suitable when there is not much data on any of the parts that
determine the problem, such as the characteristics of the objective function or of the domain itself
on which the function is defined, or on the way in which an ”optimal direction” can be sought. It
is generally agreed that genetic algorithms are more appropriate when the amount of information
available on the problem is small. When sufficient information is available, more specialized meth-
ods tend to perform better. This research aims to partially fill this gap by considering ways to use
the available information to improve GA competitiveness.

Genetic algorithms (GA) are initially inspired by the simulation of the evolution of species and
their adaptation to the characteristics of the environment in which they live. A simple summary
would be that we start from a randomly generated population of possible candidates for the solution
of the problem on which some operators are defined: selection, crossover and mutation. Each
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individual has a score related to the goodness of the solution it represents. The selection operator
is used to select the individuals to be crossed. The crossover produces new individuals that have
the characteristics of their parents. The mutation operator is applied to some of these individuals,
which randomly changes some characteristic. Successive applications of these operators cause the
population to ”evolve” towards better individuals.

A crucial point in the performance of GA applications to concrete problems lies in the coding
scheme selected for the candidate solutions. The traditional approach is based on the use of bit
arrays on which operators are simply defined. However, since the beginning of the research, the
effects of different schemes have been studied, as integer coding [13, 14], schemes based on real
numbers [14, 15, 16] and even object-based or complex schemes [17, 18, 19, 20]. Some studies
review different schemes in a detailed way [21, 22, 23]

Despite its wide use, there are significant gaps in terms of theoretical support [7], the determi-
nation of the best parameters for solving a particular problem [24, 25, 26] or even the importance
of the different operators [27].

The purpose of guided genetic algorithms is to apply heuristic techniques based on the knowl-
edge of the problem and the behaviour of the solutions [28, 29]. These modifications to the tra-
ditional GA paradigm sometimes allow some of the difficulties inherent to these algorithms to be
avoided, such as the problem of scalability with respect to the complexity of the problem to be
dealt with or the optimization of adjustment functions with high computational cost.

In the present work, two applications of such guided genetic algorithms are presented for two
domains using different coding schemes. On the one hand, a case of coding in real numbers is
studied, focusing on the problem of diagonalization of symmetric or hermetic matrices [1, 2, 30, 31,
32, 33]. A second application studies the effect of the crossover and mutation procedures acting on
a problem in which the optimization is performed in the space of permutations of a given order.
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