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Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ, Brazil, 22451-900.

1 Introduction

Electromechanical systems are an interesting type of dynamical systems. They are composed by
two interacting subsystems, a mechanical and an electromagnetic. To properly characterize the
dynamics of an electromechanical system, it is not sufficient to characterize the dynamics of each
subsystem independently. It is necessary to include in the mathematical model of the system
dynamics the mutual influence between the two subsystems [1, 2, 3]. The state of an electrome-
chanical system must involve mechanical and electromagnetic variables, as for example, positions,
velocities, angles, currents, and charges [4, 5]. At least one mechanical and one electromagnetic
variables should be considered in the dynamics parametrization. If variables of just one nature are
used, the system can not be classified as electromechanical. It will be purely mechanical or purely
electromagnetic. Thus, the smaller number of variables that should be used to parametrize the
dynamics of an electromechanical system is two.

The fact that mechanical and electromagnetic variables must appear in the parametrization
is reflected in the initial value problem (IVP) that gives the system dynamics. The initial value
problem is composed by a set of differential equations and initial conditions with these two types
of variables. In the set, the mutual interaction between the mechanical and an electromagnetic
subsystems does not appear as a functional relation. The mutual interaction varies with the state
of the subsystems and, consequently, depends on initial conditions. The dynamic behavior of an
electromechanical system depends on this mutual interaction, i.e., the phenomena present in the
system response reflect this interplay between the mechanical and electromagnetic subsystems. In
this paper, we focus in a special phenomenon: oscillations. We analyze the oscillatory response of
the simplest electromechanical system. The system is composed by a DC motor connected to a
rigid disc, a motor-disc system. This system has the minimum number of elements necessary to
be classified as an electromechanical system. It is a bare minimum to study oscillatory response of
electromechanical systems and to make modal analysis. One of the reasons to address the problem
in this bare minimum system is to highlight that the mutual interaction between the mechanical
and electromagnetic subsystems provokes an oscillatory response. Besides, the system was chosen
as simple as possible so that the analyses could be done analytically. Natural frequency and modes
are computed. Differently from purely mechanical systems [6, 7], here these parameters involve
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mechanical and electromagnetic variables, i.e., the computed natural frequency and modes are
hybrid.

The computed hybrid natural frequency is the frequency at which the electromechanical system
responds when there is no external excitation acting over it, that is, when the system is free. In
our case, this means no external torque acting over the disc and no external source voltage applied
over the electric circuit of the DC motor. In this situation, the hybrid natural frequency also
represents the frequency at which occurs the interplay of energies between the mechanical and the
electromagnetic subsystems. A consequence of the fact the hybrid natural frequency characterizes
the free response of our electromechanical system is that the system response does not have an
electromagnetic and a mechanical time scales. It has just one time scale, the one arising from this
hybrid natural frequency. We believe that this result brings an important contribution to the area
of electromechanical systems since several references in the literature affirm that the dynamics of
an electromechanical system can be characterized by mechanical and electromagnetic time scales.
Some examples where the mistakes appear are references 1, 2 and 3 of [3].

2 Dynamics of the electromechanical system

The electromechanical system analyzed in this paper is a DC motor connected to a disc as shown
in Fig. 1.

DC motor disc

~
Figure 1: Electromechanical system.

The IVP that characterizes the system dynamics is defined as follows. Find (α, z) such that,
for all t > 0,

lz̈(t) + r ż(t) + keα̇(t) = ν(t) ,
jmα̈(t) + bmα̇(t)− keż(t) = τ(t) ,

(1)

with the initial conditions α̇(0) = θ0, α(0) = α0, ż(0) = c0 and z(0) = z0. In these equations, t is
the time, ν is the source voltage, z is the electric charge, α̇ is the angular speed of the disc, l is the
electric inductance, jm is the disc moment of inertia, bm is the damping ratio in the transmission
of the torque generated by the motor, ke is the motor electromagnetic force constant, r is the
electrical resistance, and τ is an external torque made over the disc. Writing Eq. (1) in matrix
form, and assuming bm = 0 and r = 0 to get a conservative system, we obtain:[

l 0
0 jm

] [
z̈(t)
α̈(t)

]
+

[
0 ke

−ke 0

] [
ż(t)
α̇(t)

]
=

[
ν(t)
τ(t)

]
, (2)

MŸ(t) +GẎ(t) = F(t) , (3)

where M and G will be called inertia and gyroscopic matrices respectively and Y =

[
z
α

]
. The

initial conditions become Ẏ(0) =

[
c0
θ0

]
and Y(0) =

[
z0
α0

]
. Matrix G is skew symmetric, i.e.,

GT = −G, where □T indicates the transpose.
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Making X = Ẏ in Eq. (3), we propose as solution to the associated homogeneous equation
Xh = U eλ t, where U is a non-zero constant vector and λ a scalar. Substituting the proposed
general solution into the the associated homogeneous equation, we get (A − λ I)U = 0, which
forms an eigenvalue problem. Since U ̸= 0, the matrix (A− λ I) is singular. Thus:

det
(
A− λ I

)
= 0 ⇒ λ2 +

k2e
l jm

= 0 ⇒ λ1,2 = ± ke√
l jm

i , (4)

where i =
√
−1. Substituting the two eigenvalues λ1,2 into the eigenvalue problem, it is possible

to write (A − λ1 I)U1 = 0 and (A − λ1 I)U2 = 0. For λ1 =
ke√
l jm

i, the associated eigenvector

is U1 =

[
i jm/

√
l jm

1

]
. For λ2 = − ke√

l jm
i, the associated eigenvector is U2 =

[
−i jm/

√
l jm

1

]
.

The eigenvalues λ1,2 give a natural frequency of the system ωn =
ke√
l jm

. The eigenvectors U1 and

U2 are modes. Observe that the natural frequency, ωn, and the modes are hybrid. They involve
mechanical and electromagnetic parameters. Since two pairs of eigenvalues and eigenvectors were
found, the general solution of the associated homogeneous equation will be a linear combination of
the two found solutions eλ1 tU1 and eλ2 tU2.

3 Energetic analysis

To make an energetic analysis of our electromechanical system, we start multiplying Eq. (3) on the
left by ẎT . Considering a homogeneous system with F = 0, we get

ẎT (t)MŸ(t) + ẎT (t)GẎ(t) = 0
lz̈ż + jmα̈α̇ = 0

d

dt

[
1

2
lż2(t) +

1

2
jmα̇2(t)

]
= 0 .

(5)

The term
1

2
lż2 represents the magnetic energy of the system and the term

1

2
jmα̇2 the kinetic

energy. The system does not have potential energies, neither mechanical nor electromagnetic.
Observing Eq. (5) it is possible to verify that the sum of the magnetic and kinetic energies is
constant, that is, the analyzed homogeneous electromechanical system is conservative. The free
response of our motor-disc system is characterized by the interplay of kinetic and magnetic energies.
This energy interplay provokes an oscillatory response. Observe that what provokes free oscillatory
response in purely mechanical systems is the interplay of kinetic and potential energies.

The total energy present in our homogeneous electromechanical system is defined by the initial
conditions of current in the electric circuit of the motor, c(0) = c0 , and speed of the disc, α̇(0) = θ0.
Thus:

1

2
lż2(t) +

1

2
jmα̇2(t) =

1

2
lc20 +

1

2
jmθ20 . (6)

The free response of the system is characterized by an interplay of kinetic and magnetic energies.
The phase diagram of α̇ and c is a center around the point (0, 0).

4 Conclusions

In this paper, the oscillatory response of the simplest electromechanical system is analyzed. The
system dynamics is written in terms of mass and gyroscope matrices. The term gyroscope is
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employed only in the sense of an antisymmetric matrix, which couples two subsystems, one me-
chanical, another electromagnetic. The other matrix that appears, the mass matrix, is a sort of
inertia term, but with two different inertia, mechanical and electromagnetic. The deal show the
interplay between this two terms results in a very interesting dynamics, somehow similar to the
harmonic oscillator. After doing the work, it appears quite simple, but one should also ask why
it was not done before. Natural frequency and modes were computed for the electromechanical
system. Since the computed parameters involve mechanical and electromagnetic variables, they
are hybrid. The hybrid natural frequency is the frequency at which occurs the interplay of energies
between the mechanical and the electromagnetic subsystems. The hybrid modes forms a basis of
a vector space that can be used to represent and decouple the system dynamics. It should be
remarked that the response of the simplest electromechanical system does not have an electrome-
chanical and a mechanical time scales. It has just one time scale, the one arising from the hybrid
natural frequency.
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