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1 Introduction

Topological defects have been successfully recognized over the last fifty years as the source of a wide
variety of non-linear phenomena arising in different physical frameworks. In general, topological
defects are solutions in field theory models which cannot decay to the homogeneous ground state,
the vacuum.

Some physical applications require the use of non-linear Sigma field theory models with different
target spaces. This is, for example, the scenario found in spintronics, where the fields in the effective
theory describe the continuous limit of spin chains in magnetic materials. In this framework
the target manifold is the sphere S2, that is, a three-component scalar field must comply with
the constraint φ21 + φ22 + φ23 = R2. For example, Haldane constructed a O(3) non-linear sigma
field theory model to describe the low-energy dynamics of large-spin one-dimensional Heisenberg
antiferromagnets, see [5].

2 A non-linear S2-Sigma model

In this work we will study another non-linear S2-Sigma model in (1 + 1) dimensional Minkowski
space-time. The dynamics of the system will be governed by the functional action:

S[φ] =

∫
dt

∫
dx

{
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 + ∂µφ3∂

µφ3)− V (φ1, φ2φ3)

}
, (1)

where φi with i = 1, 2, 3 are real scalar fields in the sphere, that is, φa(t, x) ∈ Maps
(
R1,1,S2

)
.

The Minkowski metric is chosen as ηµν = diag (1,−1) and Einstein summation convention is only
applied to space-time indexes.

Since, the scalar fields are constrained in a sphere of radius R, then the following equation must
be also satisfied:

φ21 + φ22 + φ23 = R2. (2)

The potential term V (φ1, φ2, φ3) considered in (1) can be expressed as:

V (φ1, φ2, φ3) =
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2
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1φ
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2φ
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3φ
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)
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β
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φ21φ
2
2

φ21 + φ22
+ C. (3)

In order for this potential to be definitively semi-positive, an appropriate C will be chosen later,
and with no loss of generality we consider α2

1 > α2
2 > α2

3 ≥ 0.

This potential has a singular point where φ1 = φ2 = 0, but given that lim(φ1,φ2)→(0,0)

(
φ21φ

2
2

φ21+φ
2
2

)
→

0, therefore the potential is well-defined in that singular point.



Minimizing (1), the fields equations can be obtained as:

∂2µφ1 + α2
1φ1 + β

φ1φ
4
2(

φ21 + φ22
)2 = 0,

∂2µφ2 + α2
2φ2 + β

φ2φ
4
1(

φ21 + φ22
)2 = 0,

∂2µφ3 + α2
3φ3 = 0,

(4)

in addition to the relation (2).
The functional action (1) is Lorentz invariant. Therefore, given a finite energy static solution

φ1(x), φ2(x) φ3(x) the model admits solutions of type

φi (t, x) = φi

(
x− vt√
1− v2

)
, i = 1, 2, 3, (5)

for any velocity v with a magnitude lower than the velocity of light which is chosen as c = 1. Those
solutions are therefore known as solitary waves.

Using (2) we can obtain φ3 in function of the fields φ1 and φ2 and substitute it in (1). In this
case, the functional actions takes the form:

S[φ] =

∫
dt

∫
dx

{
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2+

+
1

2

(φ1∂µφ1 + φ2∂µφ2) (φ1∂
µφ1 + φ2∂

µφ2)

R2 − φ21 − φ22
− VS2(φ1, φ2)

}
,

(6)

where now the potential energy term is

VS2 (φ1, φ2) =
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3
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β
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2
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φ21 + φ22

)
+ C +

α2
3

2
R2. (7)

In order to VS2 (φ1, φ2) to be positive semi-definite is necessary that C =
−R2α2

3
2 . And the vacua of

the model, which corresponds to the set of solutions M = {φv ∈ R3 : V (φv) = 0}, are:

M = {vN = (0, 0, R), vS = (0, 0,−R}.

Using the following change of variables

xµ → xµ√
α2
1 − α2

3

, σ2 =
α2
2 − α2

3

α2
1 − α3

3

, γ =
β

4
(
α2
1 − α2

3

) (8)

it is possible to rewrite the potential as:

VS2 =
1

2

(
φ21 + σ2φ22 +

4γφ21φ
2
2

φ21 + φ22

)
. (9)

Minimizing (6), one obtains the equations of motion with the constrain imposed:

∂2µφ1 + φ1

(
(φ1∂µφ1 + φ2∂µφ2)

2(
R2 − φ21 − φ22

)2 +
(∂µφ1)

2 + φ1∂
2
µφ1 + φ2∂

2
µφ2 + (∂µφ2)

2

R2 − φ21 − φ21

)
− ∂VS2

∂φ1
= 0, (10)

∂2µφ2 + φ2

(
(φ1∂µφ1 + φ2∂µφ2)

2(
R2 − φ21 − φ22

)2 +
(∂µφ1)

2 + φ1∂
2
µφ1 + φ2∂

2
µφ2 + (∂µφ2)

2

R2 − φ21 − φ21

)
− ∂VS2

∂φ2
= 0. (11)

And the energy functional associated to the action (6) is

E =

∫
dx

{
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2+

+
(φ1∂µφ1 + φ2∂µφ2) (φ1∂

µφ1 + φ2∂
µφ2)

R2 − φ21 − φ22
+ VS2 (φ1, φ2)

}
.

(12)



In order to the solutions of the system have finite energy associated, the following boundary
conditions must be satisfied:

lim
x→±∞

dφi
dx

= 0 , lim
x→±∞

φi = 0 . (13)

Additionally, spherical coordinates can be employed in this problem, in this way, the potential
term in spherical coordinates becomes:

V (θ, ϕ) =
R2

4
sin2 θ

(
1 + γ + σ2 + σ2 cos (2ϕ)− γ cos (4ϕ)

)
, (14)

where σ̄ is defined as σ2 = 1− σ2.
And using spherical coordinates in (1) the action can also be express as,

S [θ, ϕ] =

∫
dx

∫
dt

{
1

2
R2
(
∂µθ∂

µθ + sin2 θ∂µϕ∂
µϕ
)
− V (θ, ϕ)

}
. (15)

and the field equations obtained minimizing the previous action are

R2∂µ∂
µθ +

R2

4

(
1 + γ + σ2 + σ2 cos(2θ)− γ cos(4ϕ)− 2 (∂µϕ)2

)
sin(2θ) = 0, (16a)

R2∂µ
(
sin2 θ∂µϕ

)
− R2

2
sin2 θ

(
1− σ2 − 4γ cos(2ϕ)

)
sin(2ϕ) = 0 . (16b)

Solitary waves (5) can be also obtain in spherical coordinates and have this form:

θ(t, x) = θ

(
x− vt√
1− v2

)
, ϕ(t, x) = ϕ

(
x− vt√
1− v2

)
. (17)

Thus, the functional energy (12) in spherical coordinates is as follows:

E =

∫
dx

{
1

2
R2
(
∂µθ∂

µθ + sin2 θ∂µϕ∂
µϕ
)

+ V (θ, ϕ)

}
. (18)

3 Topological kinks

Without loss of generality, let us consider R = 1 in (16b). This equation is satisfied for constant
values of the azimuthal spherical coordinate ϕ. Depending on which constant values ϕ we choose,
the equation (16a) can take one of the following forms:

K1/K
∗
1 Kinks: On the orbits ϕ = 0 and ϕ = π, the expression (16a) takes the form:

∂µ∂
µθ +

1

2
sin 2θ = 0 , (19)

where the the static solution obtained are static Kinks type solutions:

θK1(x) = 2 arctan e±(x−x0) . (20)

Making use of (18) the energy calculated is E = 2.

K2/K
∗
2 Kinks: In the half meridians ϕ = π

2 and ϕ = 3π
2 , the equation of motion (16a) can be

expressed as:

∂µ∂
µθ +

σ2

2
sin 2θ = 0 , (21)

which are also static Kinks solutions:

θK2(x) = 2 arctan e±σ(x−x0) . (22)

Using (18) the energy obtained is E = 2σ.



Ka±/K∗a± Kinks: In the case of those orbits, ϕ = 1
2 arctan

±
√

16γ2−(1−σ2)2

1−σ2 , for 1− σ2 < 4γ, the
equation of motion (16a) obtained is:

∂µ∂
µθ +

λ

2
sin 2θ = 0 , (23)

where λ =
(4γ+(1+σ)2)(4γ+(1−σ)2)

16γ and the static solution calculated is

θKa±
(x) = arctan e±λ(x−x0) . (24)

All these solutions are represented in Fig. 1 where two figures are shown. In both of them the
three type of solutions are given to illustrate their stability.

Figure 1: The potential V (θ, ϕ) is represented in both figures. In the left graphic, the distance
between surface represented in yellow and the sphere of radius one with the same origin represents
the value of V (θ, ϕ) in each point of the internal space. In the right graphic, V (θ, ϕ) is illustrated in
function on the spherical coordinates θ and ϕ of the internal space. The solutions K1/K

∗
1 (Blue),

K2/K
∗
2 (Red) and Ka±/K∗a± (Green) are illustrated in both figures.

4 Scattering. Numerical solution of Differential Algebraic Equa-
tions

In the MME&HB 2024 International Conference we would like to focus our investigation on the
dynamics of different topological Kinks of the model described in the previous section.

To achieve this purpose, we will solve numerically the equations of motion (4) in Cartesian
coordinates with the constrain (2). After spatial discretizations in the PDEs, they become systems
of differential algebraic equations (DAEs) because of the constrain.

The functional action of the theory (1) is invariant under Lorentz transformations (5). It allows
us to give a initial velocity v to the topological Kinks mentioned in the previous section.

As initial conditions we consider a Kink solution and an anti-Kink solution well separated. We
choose the Kink solution will be in the region x < 0 with an initial position x01 = −10 and an
anti-Kink solution in the region x > 0 with an initial position x02 = 10. Without loss of generality,
both will have the same magnitude of the initial velocity but with opposite directions. The value
of the parameters of the model elected where γ = 1 and σ = 1.5. We shall apply absorbing fourth
order boundary conditions [2] so that radiation does not bounce back in the border of the region
computation.

In this case, the index of the field equations in cartesian coordinates (4) together with the
constraint (2) is 3, and therefore an index reduction is necessary to obtain DAEs with index 1. Later
the Forest-Ruth’s fourth-order symplectic method based on Hamilton equations [1] is employed,
combined with the projection technique described in [4, §VII] or [3, §VII]. The scattering will be
performed for different values of initial velocity and a diagram of velocities will be built in each
case with a velocity step size ∆v = 0.01.
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1156, Apr 1983.


	 Scattering of kinks with a restriction on the sphere 
	Introduction
	 A non-linear S2-Sigma model 
	 Topological kinks 
	 Scattering. Numerical solution of Differential Algebraic Equations 


