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1 Introduction

Given positive integer dimensions n, m and p with n ≥ max{m, p}, consider the (n +m+ p) × (n +
m + p) double saddle point linear system

Aw ≡

A BT 0
B −D CT

0 C E

xy
z

 =

fg
h

 ≡ b, (1)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix, B ∈ Rm×n has full row rank,
C ∈ Rp×m has full rank, D ∈ Rm×m and E ∈ Rp×p are square positive definite matrices. Moreover
f ∈ Rn, g ∈ Rm and h ∈ Rp are given vectors. Such linear systems arise in a number of scientific
applications including constrained least squares problems, constrained quadratic programming,
magma-mantle dynamics, to mention a few. Similar block structures arise e.g. in liquid crystal
director modeling or in the coupled Stokes-Darcy problem, and the preconditioning of such linear
systems has been considered in Beik and Benzi (2022), Bakrani Balani et al. (2023). Due to
the symmetry of the linear system, SPD preconditioners have attracted the attention of some
authors, to be used in the framework of the MINRES method. See e.g. the analysis of block
diagonal preconditioners in Bradley and Greif (2023); Sogn and Zulehner (2018), and of another
SPD preconditioner, in the framework of multiple saddle-point symmetric linear systems, in Pearson
and Potschka (2023); Bergamaschi et al. (2024b).

2 Two inexact block preconditioners

The aim of this contribution is to consider the inexact variants of two block preconditioners, and
give bounds on the eigenvalues of the corresponding preconditioned matrices, extending the results
provided in Bakrani Balani et al. (2024), which addresses the simpler case where D ≡ 0 and E ≡ 0.

We define

S = D +BA−1BT , X = E + CS−1CT

and Â, Ŝ and X̂ as symmetric positive definite approximations of A,S, and X, respectively.
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We will analyze the eigenvalue distribution of the preconditioned matrices APT−1 and APD−1,
where

PT =

Â BT 0

0 −Ŝ CT

0 0 X̂

 , PD =

Â 0 0

0 Ŝ 0

0 0 X̂

 , (2)

The relevant spectral properties of the preconditioned matrices will be given in terms of the
eigenvalues of A = Â−1A,S = Ŝ−1S̃ and X = X̂−1X̃ where

S̃ = D +BÂ−1BT , Ŝ ≈ S̃
X̃ = E + CŜ−1CT , X̂ ≈ X̃

Our spectral analysis, which is conducted by repeatedly using the main results proved in Bergam-
aschi (2012) shows that all the truly complex eigenvalues of APT−1 are inside a circle with center 1
and radius 1, while we characterize the remaining real and positive eigenvalues of the same matrix,
as well as the real eigenvalues of APD−1, as roots of third order polynomials whose coefficients are
suitable Rayleigh Quotients of A,S and X.

3 Preliminary numerical results

We now concentrate on a realistic problem taken from Frigo et al. (2022), in which a mixed
hybrid finite element formulation for coupled poromechanics is considered. The double saddle-
point coefficient matrix takes on the form

AH =

Auu Aup 0

Apu Ãpp +Astab ∆tApπ
0 Aπp Aππ

 , (3)

where Astab is a matrix accounting for the discretization of a stabilization term, and subscripts
u, p, and π stands for the discrete displacement, velocity and pressure unknowns. Double sub-
scripts in matrices account for the coupling between two of these variables. Details on the model,
discretization and stabilization procedures can be found in Frigo et al. (2022). Matrix AH in (3)
is not symmetric, since Aup = −Apu and owing to the presence of ∆t. It can be, however readily
symmetrized by changing sign to the second block row, and multiplying the third by −∆t. This
done, solving a system with AH is equivalent to solving a system (with suitably modified right
hand side) with

A =

A BT 0
B −D CT

0 C E


as in (1) where

A ≡ Auu, B ≡ −Apu, C ≡ −∆TAπp, D = Ãpp +Astab, and E = −∆TAππ.

3.1 Bounds validation on a small test case

The sizes of the blocks are n = 3362, m = 1600, p = 3200. To set up the preconditioner, we used as
the preconditioner for A the algebraic multigrid provided by the Matlab function hsl mi20 while
the following approximations for S and X have been set, following the suggestion in Frigo et al.
(2022):

Ŝ = App + diag
(
Astab −Apudiag(Auu)−1Aup

)
, X̃ = Aππ −∆tAπpŜ

−1Apπ.
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Recalling that App is diagonal the whole first level Schur complement approximation S̃ is also

diagonal. This allows to construct exactly matrix X̃. Then we further approximate X̃ by

X̂ = diag(X̃),

in view of the weak diagonal dominance of X̃. In this section we use a right hand side corresponding
to a random solution, and the exit test on the relative residual is used it a tolerance of 10−12.

Figure 1: Eigenvalue distribution of the preconditioned matrix AP−1 for the small size test case.
Blue asterisks are the truly complex eigenvalues, red circles the real ones.

The eigenvalues of P−1A are shown in Figure 3.1. Our theoretical results yield that the complex
eigenvalues are enclosed in a circle with center 1 and radius ρmin = 3.8 × 10−3. Regarding real
eigenvalues, we have the following bounds, and true spectral intervals, for the preconditioned
matrices with PT and PD.

Triangular preconditioner: bounds 5.01e-05 4.02
Triangular preconditioner: true eigenvalues 5.01e-05 1.55

Diagonal preconditioner: bounds -1.727 -0.3542 5.0098e-05 3.5151
Diagonal preconditioner: true eigenvalues -1.125 -0.5546 5.0105e-05 0.9994

The triangular preconditioner PT is used within the GMRES method, with a restart parameter
equal to 50, while the SPD preconditioner PD is employed to accelerate the MINRES Krylov
subspace solver, with the following outcomes:

Table 1: Comparison between triangular and diagonal preconditioners.

solver(prec) its CPU solver(prec) its CPU

GMRES (PT ) 70 1.379 MINRES (PD) 185 3.266

3.2 Discussion

These preliminary results show that the developed bounds are very tight and well describe the be-
havior of the preconditioned iterative solvers. Moreover, and this is not completely obvious, despite
the pleasant property of the MINRES method (short recurrence), it seems that the combination
restarted-GMRES with triangular preconditioner is to preferred to the combination MINRES with
diagonal preconditioner.
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4 Ongoing work

Both the block triangular and diagonal preconditioners are being tried within the GMRES and
MINRES Krylov solvers, respectively, onto large size test cases with a number of unknowns of order
106 arising from both Mixed Finite Element and Mixed Hybrid Finite Element discretizations of
poro-elasticity groundwater problems (see Bergamaschi et al. (2024a)).
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