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1 Introduction

In this study, we introduce random numerical methods for a stochastic extension of the free bound-
ary diffusive logistic model with radial symmetry as proposed in [1, 2]. In these models, certain
parameters, such as the growth rate or diffusion coefficient are assumed random due to the inherent
variability in natural phenomena. Hence, the system’s behaviour influenced by this randomness, re-
sults in solutions that themselves are stochastic processes (s.p.’s). The position of the free boundary
is determined by the interplay among population growth, diffusion characteristics, and randomly
varying environmental parameters. Consequently, the free boundary becomes a s.p., adding an
additional layer of complexity to the models. In our approach, we adopt a stochastic methodology
based on mean square (m.s.) calculus, where uncertainty is well-defined.

The random population density of a spreading species, denoted as u(ω) = u(r, t; ω), and the
random moving boundary, H(t; ω), are both stochastic processes defined in a complete probability
space (Ω,F ,P). Following prior research on random moving boundary phase-change problems [3],
we limit the uncertainty to p-degrees of randomness, where p represents the dependence on a finite
number of random variables (r.v.’s) [4, p.37].

Inspired in the seminal radially symmetry deterministic model [1], this paper is focused on the
following random free boundary diffusive logistic model of Stefan type in the m.s. sense:

ut(ω) = D(ω)

(
urr(ω) +

1

r
ur(ω)

)
+ u(ω) (α(r)− β(r)u(ω)) , t > 0, 0 < r < H(t;ω), ω ∈ Ω , (1)

H ′(t;ω) = −η(ω) ur(H(t;ω), t;ω), t > 0, ω ∈ Ω , (2)

subject to the initial and boundary conditions

H(0; ω) = H0, u(r, 0; ω) = u0(r), 0 ≤ r ≤ H0, (3)

ur(0, t; ω) = 0, u(H(t; ω), t; ω) = 0, t > 0. (4)

The positive random variable (r.v.) D(ω) > 0 in the random partial differential equation (RPDE)
(1) denotes the diffusion rate and it is bounded such that

0 < d1 ≤ D(ω) ≤ d2 , for every ω ∈ Ω . (5)
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The r.v. η(ω), in the Stefan condition (2), denotes a positive r.v. meaning the proportionality
between the random moving boundary speed, H ′(t;ω), and the random population gradient at the
front. It is assumed there exists a bound η0 such that

0 < η0 ≤ η(ω), for everyω ∈ Ω. (6)

The function α(r) is the intrinsic growth rate and α(r)/β(r) is the habitat carrying capacity of
the species. Both, α(r) and β(r) are bounded continuous real functions satisfying

∃ κ1, κ2 > 0 : κ1 ≤ α(r), β(r) ≤ κ2, ∀r ∈ [0,∞). (7)

Moreover, initial population density function u0(r) satisfies

u0 ∈ C2 ([0, H0]) , u′0(0) = u0(H0) = 0, u0(r) > 0, ∀r ∈ [0, H0) . (8)

H0 is the radius value for the circular region where the initial population is confined.
The aim of this paper is to construct stable numerical finite difference schemes (RFDS’s) for

the random diffusive logistic model (1)–(8) preserving the qualitative characteristics of its solution.
Specifically, we focus on the study and the comparison of two random numerical methods: the
random Front-Fixing (FF) method and the random Front-Tracking (FT) method.

Iterative methods like finite difference schemes face challenges in random scenarios due to
storage complexities from symbolic computations of stochastic processes [5]. To address this, we
combine sample mean square methodology with the Monte Carlo method for efficient computation
of statistical moments [6]. To speed up the computational process, which becomes particularly cru-
cial when dealing with large-scale Monte Carlo simulations, we have employed a parallel computing
environment.

2 Random Numerical Methods

2.1 A random FF method

In this section we present a random FF method based on Landau-type transformation together
with the construction of a random explicit finite difference scheme (RFDS) for solve numerically
the radial symmetric diffusive logistic model (1)–(8). Let us use the change of variables,

z =
r

H(t; ω)
, v(z, t; ω) = u(r, t; ω) . (9)

Note that the new spatial variable z is a fixed proportion 0 ≤ z ≤ 1 for each r ∈ [0, H(t; ω)] at
fixed time t > 0. From this point of view, the original spatial variable r = z H(t;ω) depends on
every event ω ∈ Ω and it becomes a r.v. for every fixed t. Moreover, deterministic parameters α(r)
and β(r) become random ones as well: α(r) = α(z H(t; ω)) = a(z, t; ω), β(r) = β(z H(t; ω)) =
b(z, t; ω), with the same constraint 0 < κ1 ≤ a(z, t; ω), b(z, t; ω) ≤ κ2 , t > 0, 0 ≤ z ≤ 1, ω ∈ Ω.

By denoting G(t; ω) = H2(t; ω) and substituting (9) into the problem (1)–(4), one gets for
t > 0, 0 < z < 1, ω ∈ Ω,

G(t; ω) vt = D(ω) vzz +

(
D(ω)

z
+

z

2
G′(t; ω)

)
vz +G(t; ω) [a(z, t; ω)− b(z, t; ω) v] v, (10)

G′(t; ω) = −2 η(ω) vz(1, t; ω), t > 0, ω ∈ Ω, (11)

subject to the initial and boundary conditions

G(0) = H2
0 , v(z, 0) = u0(z H

2
0 ), vz(0, t; ω) = 0, v(1, t; ω) = 0, t > 0, 0 ≤ z ≤ 1, ω ∈ Ω. (12)

Note that s.p.’s v2, vz, vt, vzz, G(t; ω) and G′(t; ω) lie in L4(Ω) in order to legitimised the m.s.
operational calculus developed in (10)–(11).
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Construction of RFDS-FF

We consider the transformed problem (10)–(12). Let us define a uniform grid zj = jh, h = 1/M ,
tn = nk, k = T/N , where N and M are two given positive integer numbers and T is a fixed
time horizon. We denote by vnj (ω) ≈ v(zj , t

n;ω) the numerical approximation of the solution s.p.
v(z, t;ω), ω ∈ Ω, in a mesh point (zj , t

n). In addition we introduce the following notation
gn(ω) ≈ G(tn;ω), anj (ω) = a(zj , t

n;ω), bnj (ω) = b(zj , t
n;ω) .

By using a forward first-order approximation for the m.s. time derivatives and a centred second-
order approximations for the m.s. spatial derivatives, one gets the following RFDS-FF for the
problem (10)–(12):

vn+1
j (ω) = An

j (ω) v
n
j−1(ω)+Bn

j (ω) v
n
j (ω)+Cn

j (ω) v
n
j+1(ω) , 1 ≤ j ≤ M−1 , 0 ≤ n ≤ N−1 , ω ∈ Ω ,

(13)
where

An
j (ω) =

D(ω) k

h2 gn(ω)
− D(ω)k

2h gn(ω) zj
− zj

4h

(
gn+1(ω)

gn(ω)
− 1

)

Bn
j (ω) = 1 + k

(
anj (ω)− bnj (ω) v

n
j (ω)−

2D(ω) k

h2gn(ω)

)

Cn
j (ω) =

D(ω) k

h2 gn(ω)
+

D(ω) k

2h gn(ω) zj
+

zj
4h

(
gn+1(ω)

gn(ω)
− 1

)


0 ≤ n ≤ N − 1 , ω ∈ Ω ; (14)

gn+1(ω)− gn(ω)

k
= −η(ω)

h

(
3vnM (ω)− 4vnM−1(ω) + vnM−2(ω)

)
, 0 ≤ n ≤ N − 1 . (15)

Boundary conditions (12) are discretized as

vz(0, t
n;ω) ≈ −3vn0 (ω) + 4vn1 (ω)− vn2 (ω)

2h
= 0, vnM (ω) = 0 , 0 ≤ n ≤ N . (16)

Once numerical solution for the transformed RPDE (10)–(12) is computed, the numerical solution
of the original random Stefan problem (1)–(8) at t = T is found by the inverse transformation:
rj ≈ zj H(T ; ω), u(rj , T ; ω) ≈ vNj (ω).

Qualitative properties of the numerical solutions s.p.’s

Now we present qualitative properties of the RFDS-FF (13)–(16), such as conditional stability, pos-
itivity and monotonicity of the random numerical s.p.’s. For the sake of clarity in the presentation,
we recall some definitions [3].

Definition 1 The numerical solution s.p.
{
vnj (ω)

}
, ω ∈ Ω, of a random RFDS is said to be

non-increasing monotone in the spatial index j = 0, . . . ,M − 1, if vnj (ωℓ) ≥ vnj+1(ωℓ), for 0 ≤ j ≤
M − 1, 0 ≤ n ≤ N, ∀ωℓ ∈ Ω.

Definition 2 The numerical free boundary s.p. {gn(ω)}, ω ∈ Ω of a random RFDS is said to be
strictly increasing, if gn(ωℓ) < gn+1(ωℓ), 0 ≤ n ≤ N − 1, ∀ωℓ ∈ Ω.

Definition 3 A random numerical scheme is said to be ∥ · ∥p-stable in the fixed station sense in
[0, 1]× [0, T ], if for every partition with k = T/N and h = 1/M , it is fulfilled that∥∥vnj (ωℓ)

∥∥
p
≤ C, 0 ≤ j ≤ M, 0 ≤ n ≤ N, ∀ωℓ ∈ Ω, (17)

where the constant C is independent of the step-sizes h and k the time level n.
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In [7], the free boundary diffusive logistic model was studied in the deterministic scenario
proposing the Front-Fixing method combined with a finite difference scheme. Numerical analysis
developed provides qualitative properties of the numerical solution summarized in Theorems 2-6 of
[7]. In the present random scenario, we apply those theorems taking into account that D(ω) > 0 is
a bounded r.v. verifying condition D(ω) < d2 for every ω ∈ Ω, as given in (5). Then the following
result is established.

Theorem 1 With the previous notation for small enough spatial step-size h, the random numerical
solution

{
vnj (ω)

}
, ω ∈ Ω, is positive 0 ≤ j ≤ M , 0 ≤ n ≤ N ; non-increasing monotone in the

spatial index j. Moreover, the random free-boundary s.p. {gn(ω)}, ω ∈ Ω, is strictly increasing.
Finally,

{
vnj (ω)

}
is ∥ · ∥p-stable in the fixed station sense if k < Qh2, Q = min

1≤i≤3
Qi, where

Q1 =
H2

0

2d2 + h2α1H2
0

(
α2 β2

α1 β1
− 1

) ; Q2 =
H2

0

2d2 + h2 β2H2
0 (2M0 − Cm)

; Q3 =
4H2

0

9d2 + 8h2 β2H2
0 P0

;

C0 = sup
r∈R+

{
α(r)

β(r)

}
, Cm = inf

r∈R+

{
α(r)

β(r)

}
, M0 = max

0≤r≤H0

{u0(r)}, P0 = max {M0, C0} ,

and αi, βi, i = 1, 2, verify

0 < κ1 ≤ α1 ≤ α(r) ≤ α2 ≤ κ2, 0 < κ1 ≤ β1 ≤ β(r) ≤ β2 ≤ κ2, ∀r ∈ [0,∞) . (18)

2.2 A random FT method

In this section we propose a random FT method for the RPDE (1)–(8), employing the fixed grid
approach, where the space-time domain is subdivided into a finite number of uniformly distributed
nodes and the position of the boundary does not necessarily coincide with the mesh points. We
consider the numerical domain [0, L] × [0, T ], with the grid points rj = j h, tn = nk, where
h and k are the space and time increments, respectively. The step sizes (h, k) are fixed and
it appears a fractional distance between the last interior mesh point and the localization of the
moving boundary. The numerical approximation of the solution s.p. u(rj , t

n;ω) is denoted by
unj (ω) and the approximation of the moving front s.p. H(tn;ω) is denoted by Hn(ω). Let us
denote in(ω) the spatial index of the last interior point of the non-zero population region, that is,
rin(ω) < Hn(ω) ≤ rin(ω)+1, ω ∈ Ω.

Then, for any realization ω ∈ Ω, there exists a distance parameter in each time level n namely
pn(ω), such that

Hn(ω) = (in(ω) + pn(ω))h , 0 < pn(ω) ≤ 1 , 0 ≤ n ≤ N. (19)

From (3) one gets H0(ω) = H0 and for initialization we take p0(ω) = p0 = 1, i0(ω) = i0 = M − 1
and H0(ω) = H0 = (i0 + 1)h = Mh, for all realizations ω ∈ Ω.

In order to approximate the m.s. spatial partial derivatives of the RPDE (1) at the last interior
point rin(ω) = in(ω)h, a Lagrange interpolation passing through the points rin(ω)−1, rin(ω) and
Hn(ω) is used, see [8, Pages 164-165], obtaining the approximations

∂2u

∂r2
(
rin(ω), t

n;ω
)

≈ 2

h2

(
1

pn(ω) + 1
unin(ω)−1(ω)−

1

pn(ω)
unin(ω)(ω)

)
, (20)

∂u

∂r

(
rin(ω), t

n;ω
)

≈ 1

h

(
− pn(ω)

1 + pn(ω)
unin(ω)−1(ω)−

1− pn(ω)

pn(ω)
unin(ω)(ω)

)
, (21)

In the boundaryHn(ω), see (19), the same three point Lagrange interpolation formulae provides
the following m.s. approximation for the first spatial m.s. derivative at the moving front involved
in Stefan condition (2)

∂u

∂r
(Hn(ω), tn;ω) ≈ 1

h

(
pn(ω)

pn(ω) + 1
unin(ω)−1(ω)−

pn(ω) + 1

pn(ω)
unin(ω)(ω)

)
. (22)
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The forward approximation of the time m.s. derivative in (2)

d

dt
(H(tn;ω)) ≈ Hn+1(ω)−Hn(ω)

k
=

(∆n(ω)− pn(ω)) h

k
(23)

where ∆n(ω)h denotes the distance between the last interior point in the time level n and the
localization of the moving front in time level n+ 1, that is

∆n(ω)h = Hn+1(ω)− in(ω)h . (24)

From the approximations above the discretization of the RPDE (1) takes the following form:

• For 1 ≤ j ≤ in(ω)− 1:

un+1
j (ω) = Ãn

j (ω)u
n
j−1(ω) + B̃n

j (ω)u
n
j (ω) + C̃n

j (ω)u
n
j+1(ω), (25)

where

Ãn
j (ω) =

kD(ω)

h2

(
1− 1

2j

)
> 0, C̃n

j (ω) =
kD(ω)

h2

(
1 +

1

2j

)
> 0 ,

B̃n
j (ω) = 1 + k

[
−2D(ω)

h2
+ αj − βj u

n
j (ω)

]
, with αj = α(rj), βj = β(rj).

 (26)

• For the last interior point rin(ω) = in(ω)h, we use the approximations (20) and (21) obtaining

un+1
in(ω)(ω) =unin(ω)(ω) + k

D(ω)

h2

[
unin(ω)−1(ω)

pn(ω) + 1

(
2− pn(ω)

in(ω)

)
−

unin(ω)(ω)

pn(ω)

(
2 +

1− pn(ω)

in(ω)

)]
+ kunin(ω)(ω)

(
αin(ω) − βin(ω) u

n
in(ω)(ω)

)
.

(27)

• For j = 0: un+1
0 (ω) =

4un+1
1 (ω)− un+1

2 (ω)

3

• For the advance of the front, given by the Stefan condition (2), from the approximations
(23)–(24) it results that

∆n(ω) = pn(ω) +
k η(ω)

h2

(
pn(ω) + 1

pn(ω)
unin(ω)(ω)−

pn(ω)

pn(ω) + 1
unin(ω)−1(ω)

)
. (28)

Then the moving front at time level n+ 1 is given by

Hn+1(ω) = (in(ω) + ∆n(ω)) h . (29)

Stability condition for the RFDS-FT (25)–(29) has been found in order to guarantee the m.s.
stability of the pairwise solution s.p.’s

{
unj (ω), H(tn;ω)

}
:

k ≤ min

{
h

η0 |u′0(H0)|
,

h2

2d2 + |α1 − β2 P0| h2
,

ϵ h2 i0

d2 (2i0 + 1− ϵ)

}
, (30)

where d2 is defined in (5), η0 is given by (6), α1 and β2 are defined in (18), and P0 is defined in
Theorem 1.
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3 Numerical Results

In this section, we compare the numerical results from RFDS-FF and RFDS-FT methods. We
chose α = β = 1, H0 = 3, D(ω) ∼ N[0.8, 1.2](1, 0.1) and η(ω) ∼ Be[1.6, 2.4](2, 4). Note that we have
chosen truncated distributions for the s.v.’s D(ω) and η(ω) because of the boundedness conditions

(5) and (6). The initial population distribution is given by u0(r) = cos
(π r

6

)
.

Taking M = 50 spatial points, resulting in hFF =
1

M
=

1

50
and hFT =

H0

M
=

3

50
, respectively,

we consider the following time step-size k = 7.0e − 04 to ensure satisfaction of the hypothesis
of Theorem 1 and condition (30) simultaneously, which means the stability of the solutions s.p.
generated for both methods.

Figure 1: Mean of the numerical solution s.p. for the problem (1)–(8) at T = 50, comparing the FF
method with different numbers of grid points M , and the FT method using M = 50 grid points.The
plot on the right shows a zoomed-in view.

Figure 1 displays the mean of the numerical solution for problem (1)–(8). It compares the
RFDS-FF method with various numbers of grid points M , against the RFDS-FT method that uses
M = 50 grid points. Up to the inflection point, represented by the average of the free boundary as
calculated by the FT method, the results exhibit convergence patterns. For short time intervals,
both methods give similar results.

In the study of errors of the free random boundary, H(t;ω), we use the following absolute
deviations

AbsDev
(
µ
[
HFF

K , HFT
K

])
=

∣∣µ [
HFF (t;ωK)

]
− µ

[
HFT (t;ωK)

] ∣∣ , 0 ≤ t ≤ T, K fixed,

AbsDev
(
σ
[
HFF

K , HFT
K

])
=

∣∣σ [
HFF (t;ωK)

]
− σ

[
HFT (t;ωK)

] ∣∣ , 0 ≤ t ≤ T, K fixed .

(31)

Figure 2 shows that the approximations of both statistical moments of the free boundary the
mean, µ[H(t;ωK)], and the standard deviation σ[H(t;ωK)] computed by means of the random FF
and FT methods are close independently of the number of Monte Carlo simulations K. Note that
in these figures we illustrate the full evolution of the absolute deviations of the statistical moments
of the free boundary up to the times T = 1 and T = 10, respectively.

The statistical spread of the numerical solution s.p. is sensitive to the changes of the standard
deviation of the involved r.v.’s data in the model, i.e. the random parameters D(ω) and η(ω).
Taking M = 50, K = 100, and T = 10 and the distribution N[0.8, 1.2](1, 0.1) for D(ω), Figure 3(left)
shows the standard deviation of the numerical solution s.p. for different pairs of the parameters
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Figure 2: Absolute deviations of the mean (left) and the standard deviation (right) of the random
free boundary H(T ;ωK) computed between RFDS-FF and RFDS-FT methods up to time T = 10
by (31) when the sample K realizations varies.

Figure 3: Standard deviation of numerical solution s.p. computed by the FF (solid lines) and FT
(dashed lines) methods for T = 10. Left plot: over different λ = 1, 2, 4 in Be[1.6, 2.4](2λ, 4λ). Right
plot: over different σ = 0.01, . . . , 0.5 in N[0.8, 1.2](1, σ).

of the shifted-beta distribution. In an analogous way, fixing the distribution Be[1.6, 2.4](2, 4) for
η(ω), the the standard deviation of the numerical solution s.p. for various values of the parameter
σ in the truncated normal distribution N[0.8, 1.2](1, σ) is shown in Figure 3 (right). A consistent
behavioural pattern is observed across all cases. As we get closer to the free boundary, the standard
deviation also moves towards zero, as for all realizations the population density becomes zero when
the spatial variable reaches the moving front.

4 Conclusions

This paper introduces a random free boundary diffusive logistic model with radial symmetry, con-
sidering parameters with finite randomness and a random unknown function for the propagation
front. Two random approaches, the front-fixing (FF) and front-tracking (FT) methods, are uti-
lized to handle the free boundary. Numerical solutions employ explicit RFDS, with stability and
positivity conditions established for both methods.
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RFDS in the mean square sense poses storage issues due to computing expectation and variance
iteratively. To address this, the Monte Carlo technique is employed for computing statistical
moments of the solution and stochastic moving boundary.

The study compares the proposed methods, identifying advantages, drawbacks, and applicabil-
ity areas. The RFDS-FF method requires a fixed number of grid points for all time iterations and
sample realizations, while the RFDS-FT method adapts grid points dynamically. Despite being
more efficient in time and memory usage, the RFDS-FF method may sacrifice accuracy due to fixed
boundary inverse transformation, mitigated by using more grid points. In contrast, the RFDS-FT
method maintains consistent step-size, eliminating this drawback.

In conclusion, the choice between RFDS-FF and RFDS-FT methods depends on the specific
problem. The RFDS-FF method suits smaller time simulations requiring fast and accurate results,
while the RFDS-FT method is preferable for longer time horizons. By understanding the strengths
and limitations, researchers can select the most suitable approach for their application.
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