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1 Introduction

Random walks are a very good way to represent systems with elements interacting with each other.
This interaction can be modeled by a certain graph, assigning to each edge a certain transition
probability. So, the movement through the graph can be represented by a random walk such that
if we start in one of their nodes, we move randomly to one of its neighbors. Thus, we can talk
about random walks on graphs [7].

The transition matriz P provides the probabilities for transitions between states in a random
walk. Hence, it is possible to study its long-term behavior and its short-term behavior. It is very
well known that for the first of them we have to consider an eigenvector of P, denoted by 7 and
called stationary distribution. For the second one, it is defined the mean first passage time (MFPT)
from state i to state j, that is, the expected number of steps to reach j from an initial state 7.
Moreover, the expected number of steps to randomly get any state i according to 7 is a constant
independent of the initial state. The value is known as Kemeny’s constant. We refer the reader
to [6] for a detailed study of these concepts. There is a wide literature on the study of Kemeny’s
constant and the MFPT that relates these parameters to generalized inverses of the matrix | — P,
see for instance [4, 5].

We aim at describing the MFPT and the Kemeny’s constant using the generalized inverses
associated with the combinatorial Laplacian instead of l-inverses of the matrix | — P, since the
combinatorial Laplacian is a symmetric and positive semidefinite Z-matrix, that is an M-matrix,
and hence we can take advantage of its properties, see [1].

2 Random walks using the combinatorial Laplacian

Let T' = (V, E, ¢) be a network; that is, a finite and connected graph without loops nor multiples
edges, with vertex or state set V and edges set E, being ¢ € R™ a conductance assigned to every
edge. The cardinals of these two subsets are |V| = n and |E| = m, respectively. We say that
x is adjacent to y, x ~ y, if {z,y} € E and, in this case, we assign a conductance c(x,y) > 0.
Therefore, the conductance is a function ¢ : V- x V' — [0, +00), such that ¢(z,y) = c(y,x), and
c(x,y) =0if {z,y} ¢ E. If we denote C(V) as the set of real functions on V', then k£ € C(V') defined
as k(x) = Z c(z,y), is the degree of . When ¢(z,y) = 1 for any = ~ y, I is called graph. In this

yev
case, k(z) is the number of states adjacent to x.
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The combinatorial Laplacian operator, or simply the Laplacian, of the network I is the endo-
morphism of C(V') that assigns to each u € C(V') the function

Llu)(w) =Y e(a,y)(ul@) - u(y)),

yev

for z € V. It is well known that the Laplacian is self-adjoint and positive semidefinite. Additionally,
L(u) = 0 if and only if u is a constant function.

If we give an order on the vertex set V', then functions can be identified with vectors in R", and
operators can be identified with square n-matrices. Hence, suppose that V = {31, 89, ... ,sn}, then
we will consider ¢;; = c(s;,s;). Every u € C(V) is identified with (u(s1), u(s2), ... ,u(sn))T eR”
and the combinatorial Laplacian with the symmetric irreducible matrix

kl —C12 ... —Cin
—C12 ko - TCop
= ’
—C1n —Conp ... kn
where k; = k(s;), ¢ = 1,...,n. This matrix is diagonally dominant and, hence, it is positive

semidefinite. Moreover, it is singular and 0 is a simple eigenvalue whose associated eigenvector is
constant, L1 = 0, where 1 is the all ones vector.

For the reader’s convenience, vectors will be boldfaced. In particular, k = (kl, ko, ... ,kn)T is
the degree column-vector for I'. Moreover, given a matrix A and a vector v, we denote by Ay the
diagonal matrix whose diagonal elements are a;; and by D, the diagonal matrix whose diagonal
elements are given by the elements of v.

2.1 The MFPT

The short-term behavior of a random walk is modelled by the mean first passage time m;;, for
1,7 = 1,...,n, i # j, which gives the expected number of time-steps t > 1, before the system
reaches s;, if it starts in s;,

mi; = B[t | Xy = 55, Xo = si],

where E[e] denotes the expected value of e. It is well known [6] that, for i # j, 1 <i,j <mn,
mij = pij + Y pix(mig +1) =1+ pamy. (1)
k#j k#j

Besides, the mean recurrence time for state s;, denoted by m;;, is the expected number of time
steps before we return to s; for the first time, for any ¢ = 1,...,n. The mean recurrence time for
state s; also verifies Equation (1). If we define J as the matrix of order n with all entries equal to
1, we can write (1) in matrix form as in [2],

M = J+ PM — PM,. (2)

1

Therefore, my; = —, since multiplying both sides of (2) by @', we obtain 0T = «" (J — PMy) or
TG

OT = 1T - WTMd.

We can use this last expression and Equation (2) to obtain the matrix expression for the MEPT

(I-P)M=J—-PD_L (3)
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System (3) has solution because each column of J — PD;! belongs to 7+ and the solution is
unique up to a multiple of w. Usually, generalized inverses of | — P have been used in the literature
to solve the above system, see for instance [3]. Remember that if A is any m X n singular matrix,
a generalized inverse or l-inverse of A is any matrix X such that AXA = A. For any 1-inverse G of
| — P, we get that

M=G(J—PD;') +1a’,

being a a constant vector.
We show next the expression of MFPT in terms of a 1-inverse of the combinatorial Laplacian
L, instead of using 1-inverses of of | — P.

Proposition 1 Let I' be a connected network and G a 1-inverse of L, then the mean first passage
time matriz M can be written as

M = GDiJ — J(GDiJ) , + vol(I) (D! = G + JGy ).

2.2 The Kemeny’s constant

The well-known quantity K = Z m;jm; represents the time for reaching a random state s;, starting
eV
from an initial state s; accordjing to the stationary distribution 7. It is a very curious fact that
K does not depend on s;, and hence the name Kemeny’s constant. In a matrix-vector form, it is
written as Mr = K1.
Our aim now is to express the Kemeny’s constant using G, a 1-inverse of the combinatorial
Laplacian.

Proposition 2 If G is a 1-inverse of L such that Gk = g1, the Kemeny’s constant is given by

K =1— g+ tr(GDy).

3 Conclusions

In the field of random walks, the mean first passage time matrix and the Kemeny’s constant allow
us to deepen into the study of networks. For a transition matrix P, we can observe in the literature
how the authors characterize mean first passage time using generalized inverses of |—P. In this work,
we provide alternative expressions for fundamental parameters in the framework of random walks
that involve generalized inverses of the combinatorial Laplacian, which is a symmetric singular
M-matrix.

The results obtained in this manuscript parallel the ones obtained by Hunter in his big produc-
tion (see [4] as an example) or the ones of other authors in [8, 9, 10].
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