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1 Introduction

Random walks are a very good way to represent systems with elements interacting with each other.
This interaction can be modeled by a certain graph, assigning to each edge a certain transition
probability. So, the movement through the graph can be represented by a random walk such that
if we start in one of their nodes, we move randomly to one of its neighbors. Thus, we can talk
about random walks on graphs [7].

The transition matrix P provides the probabilities for transitions between states in a random
walk. Hence, it is possible to study its long-term behavior and its short-term behavior. It is very

well known that for the first of them we have to consider an eigenvector of P, denoted by πππ and
called stationary distribution. For the second one, it is defined the mean first passage time (MFPT)
from state i to state j, that is, the expected number of steps to reach j from an initial state i.
Moreover, the expected number of steps to randomly get any state i according to πππ is a constant
independent of the initial state. The value is known as Kemeny’s constant. We refer the reader
to [6] for a detailed study of these concepts. There is a wide literature on the study of Kemeny’s

constant and the MFPT that relates these parameters to generalized inverses of the matrix I − P,
see for instance [4, 5].

We aim at describing the MFPT and the Kemeny’s constant using the generalized inverses

associated with the combinatorial Laplacian instead of 1-inverses of the matrix I − P, since the
combinatorial Laplacian is a symmetric and positive semidefinite Z-matrix, that is an M -matrix,
and hence we can take advantage of its properties, see [1].

2 Random walks using the combinatorial Laplacian

Let Γ = (V, E, c) be a network; that is, a finite and connected graph without loops nor multiples

edges, with vertex or state set V and edges set E, being c ∈ R+ a conductance assigned to every 
edge. The cardinals of these two subsets are |V | = n and |E| = m, respectively. We say that
x is adjacent to y, x ∼ y, if {x, y} ∈ E and, in this case, we assign a conductance c(x, y) > 0.
Therefore, the conductance is a function c : V × V −→ [0, +∞), such that c(x, y) = c(y, x), and
c(x, y) = 0 if {x, y} /∈ E. If we denote C(V ) as the set of real functions on V , then k ∈ C(V ) defined

as k(x) =
∑
y∈V

c(x, y), is the degree of x. When c(x, y) = 1 for any x ∼ y, Γ is called graph. In this

case, k(x) is the number of states adjacent to x.
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The combinatorial Laplacian operator, or simply the Laplacian, of the network Γ is the endo-
morphism of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
,

for x ∈ V . It is well known that the Laplacian is self-adjoint and positive semidefinite. Additionally,
L(u) = 0 if and only if u is a constant function.

If we give an order on the vertex set V , then functions can be identified with vectors in Rn, and
operators can be identified with square n-matrices. Hence, suppose that V =

{
s1, s2, . . . , sn

}
, then

we will consider cij = c(si, sj). Every u ∈ C(V ) is identified with
(
u(s1), u(s2), . . . , u(sn)

)T ∈ Rn
and the combinatorial Laplacian with the symmetric irreducible matrix

L =


k1 −c12 . . . −c1n
−c12 k2 . . . −c2n

...
...

. . .
...

−c1n −c2n . . . kn

 ,
where ki = k(si), i = 1, . . . , n. This matrix is diagonally dominant and, hence, it is positive
semidefinite. Moreover, it is singular and 0 is a simple eigenvalue whose associated eigenvector is
constant, L1 = 000, where 1 is the all ones vector.

For the reader’s convenience, vectors will be boldfaced. In particular, k =
(
k1, k2, . . . , kn

)T
is

the degree column-vector for Γ. Moreover, given a matrix A and a vector v, we denote by Ad the
diagonal matrix whose diagonal elements are aii and by Dv the diagonal matrix whose diagonal
elements are given by the elements of v.

2.1 The MFPT

The short-term behavior of a random walk is modelled by the mean first passage time mij , for
i, j = 1, . . . , n, i 6= j, which gives the expected number of time-steps t ≥ 1, before the system
reaches sj , if it starts in si,

mij = E
[
t | Xt = sj , X0 = si

]
,

where E[•] denotes the expected value of •. It is well known [6] that, for i 6= j, 1 ≤ i, j ≤ n,

mij = pij +
∑
k 6=j

pik
(
mkj + 1

)
= 1 +

∑
k 6=j

pikmkj . (1)

Besides, the mean recurrence time for state si, denoted by mii, is the expected number of time
steps before we return to si for the first time, for any i = 1, . . . , n. The mean recurrence time for
state si also verifies Equation (1). If we define J as the matrix of order n with all entries equal to
1, we can write (1) in matrix form as in [2],

M = J + PM− PMd. (2)

Therefore, mii =
1

πi
, since multiplying both sides of (2) by πππT, we obtain 000T = πππT (J− PMd) or

000T = 1T − πππTMd.

We can use this last expression and Equation (2) to obtain the matrix expression for the MFPT

(3)(I − P)M = J − PDπππ
−1. 
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System (3) has solution because each column of J − PD−1πππ belongs to πππ⊥ and the solution is
unique up to a multiple of πππ. Usually, generalized inverses of I−P have been used in the literature
to solve the above system, see for instance [3]. Remember that if A is any m× n singular matrix,
a generalized inverse or 1-inverse of A is any matrix X such that AXA = A. For any 1-inverse G̃ of
I− P, we get that

M = G̃
(
J− PD−1πππ

)
+ 1αααT,

being ααα a constant vector.

We show next the expression of MFPT in terms of a 1-inverse of the combinatorial Laplacian
L, instead of using 1-inverses of of I− P.

Proposition 1 Let Γ be a connected network and G a 1-inverse of L, then the mean first passage
time matrix M can be written as

M = GDkJ− J
(
GDkJ

)
d

+ vol(Γ)
(
Dk
−1 − G + JGd

)
.

2.2 The Kemeny’s constant

The well-known quantity K ≡
∑
j∈V

mijπj represents the time for reaching a random state sj , starting

from an initial state si according to the stationary distribution πππ. It is a very curious fact that
K does not depend on si, and hence the name Kemeny’s constant. In a matrix-vector form, it is
written as Mπππ = K1.

Our aim now is to express the Kemeny’s constant using G, a 1-inverse of the combinatorial
Laplacian.

Proposition 2 If G is a 1-inverse of L such that Gk = g1, the Kemeny’s constant is given by

K = 1− g + tr(GDk).

3 Conclusions

In the field of random walks, the mean first passage time matrix and the Kemeny’s constant allow
us to deepen into the study of networks. For a transition matrix P, we can observe in the literature
how the authors characterize mean first passage time using generalized inverses of I−P. In this work,
we provide alternative expressions for fundamental parameters in the framework of random walks
that involve generalized inverses of the combinatorial Laplacian, which is a symmetric singular
M-matrix.

The results obtained in this manuscript parallel the ones obtained by Hunter in his big produc-
tion (see [4] as an example) or the ones of other authors in [8, 9, 10].
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