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1 Introduction and motivation

The computation of matrix trigonometric functions has received remarkable attention in the last
decades due to its usefulness in the solution of systems of second order linear differential equa-
tions. Recently, several state-of-the-art algorithms have been provided for computing these matrix
functions [1, 2, 3, 4] in particular for the matrix cosine function. The proposed methods can be
classified into two classes: Rational methods (L∞, Padé approximation, see references [5, 1, 6]) and
Polynomial methods (Taylor, Hermite, Bernoulli and Euler series, see references [7, 8, 9, 10, 11]).
In general, polynomial approximations are better than rational approximations. As examples of
this assertion, we can show the following three significant examples, where different codes were
compared with cosm, code based on the Padé rational approximation [6]. In [9], authors compared
the following functions:

• cosmtay : code based on Taylor series [7],

• cosmtayher : code based in Hermite series [9],

with cosm on different classes of matrices, see Table 1.

Test 1 Test 2 Test 3

E(cosmtayher) < E(cosm) 92% 81% 77.97%

E(cosmtayher) < E(cosmtay) 53% 65% 69.49%

Table 1: Relative error comparison [9] between cosmtayher (Hermite), cosmtaycosmtay (Taylor)
and cosm (Padé) for different sets of matrices.

Moreover, in [10], authors compared the function cosmber−1−4, code based on Bernoulli series
[10]. with cosm on different classes of matrices, see Table 2. Finally, in reference [11], authors
compared the following functions:

• cosm−euler−at : code based on Euler series, see [11], (that uses even and odd terms),

• cosm−euler−et : code based on Euler series, see [11], (that uses only even terms),
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E(cosm) < E(cosmber−1−4) 13.97%

E(cosm) > E(cosmber−1−4) 86.03%

Table 2: Relative error comparison between cosm versus cosmber−1−4 for different sets of matrices.

with cosm on different classes of matrices, see Table 3. As we can appreciate, Tables 1, 2 and 3
show that the polynomial methods (Taylor, Hermite, Bernoulli, Euler) performed better results (in
general) than those based on rational methods (Padé).

Set 1 Set 2 Set 3

E(cosm) < E(cosm−euler−at) 3.0% 0.0% 20.00%

E(cosm) > E(cosm−euler−at) 97.0% 100.0% 80.00%

E(cosm) < E(cosm−euler−et) 6.0% 26.0% 16.36%

E(cosm) > E(cosm−euler−et) 94.0% 74.0% 83.64%

Table 3: Improvement percentage among the different codes for the 3 sets of matrices.

2 Scalar Chebyshev polynomials. Extension to the matrix case

Chebyshev polynomials {Tn(x)}n≥0 of the first kind [12]. are defined following explicit expressions:

T0(x) = 1

Tn(x) =

[n
2
]∑

k=0

(
n
2k

)(
x2 − 1

)k
xn−2k , n ≥ 1

= n
n∑

k=0

(
(−2)k(k + n− 1)!

)
(2k)!(n− k)!

(1− x)k , n ≥ 1.


(1)

Chebyshev polynomials also satisfies the following three-term-recurrence formula:

T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1

 (2)

Some properties of this type of polynomials can be found in references [12, 13].

It is well known that Chebyshev polynomials are orthogonal with respect to the weight function
w(x) = (1− x2)−

1
2 on the interval [−1, 1], see [14] for example. A function f(x) for |x| ≤ 1 can be

developed in series of Chebyshev polynomials of the form

f(x) =
∑
k≥0

akTk(x) , ak =
2

π

∫ 1

−1
f(x)Tk(x)(1− x2)−

1
2dx, (3)

see the classical references [15, 13, 12] for details. For the particular case that f(x) = ex, we have
the following expansion [12] for the scalar exponential function:

ex = J0(i) + 2
∑
k≥1

ikJk(−i)Tk(x) , |x| < 1, (4)
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where i is the imaginary unit and Jk(x) is the Bessel function of the first kind of order k.

During the last years, different extensions of Chebyshev polynomials to matrix framework have
been given in conection with matrix differential equations, integral transforms, fast methods for
resuming matrix polynomials, etc., see [16, 17, 18, 19, 20, 21, 22]. Given a matrix X ∈ Cr×r, we
define the Chebyshev matrix polynomials {Tn(X)}n≥0 by recurrence as follows:

T0(X) = Ir,
T1(X) = X,

Tn+1(X) = 2XTn(X)− Tn−1(X) , n ≥ 1.

 (5)

We also have the following explicit formulas for the Chebyshev matrix polynomials:

T0(X) = Ir

Tn(X) =

[n
2
]∑

k=0

(
n
2k

)(
X2 − Ir

)k
Xn−2k , n ≥ 1

= n
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k=0

(
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(6)

Note that Tn(X) = (−1)nTn(−X). Formula (4) has been generalized for development of the matrix
exponential in a Chebyshev series, [23]:

eA = J0(i)Ir + 2
∑
k≥1

ikJk(−i)Tk(A) , A ∈ Cr×r , ∥A∥ ≤ 1. (7)

On the other hand, trigonometric matrix functions sine and cosine have been proven to be especially
useful for solving systems of second-order linear differential equations, playing a similar role to that
of the exponential matrix for first order systems. Due to the relationship sin (A) = cos

(
A+ π

2 I
)
,

where I is the identity matrix, the matrix sine function can be calculated using the same methods
as for the matrix cosine one. Usually, research is concentrated on developing efficient state-of-the-
art algorithms to compute the matrix cosine function approximately, see [3] and references therein.

Form formula (7), we obtain

cos (A) = J0(i)Ir + 2
∑
k≥1

(−1)kJ2k(−i)Tk(iA) , ∥A∥ ≤ 1. (8)

If we use the Bessel functions Ik(x) ((−1)kJ2k(−i) = I2k(1)), one gets the equivalent expression

cos (A) = I0(1)Ir + 2
∑
k≥1

I2k(1)Tk(iA) , ∥A∥ ≤ 1. (9)

An algorithm called cosm−chebyshev has been developed to compute the matrix cosine and imple-
mented on MATLAB Version 2023b. We use an absolute backward error analysis with polynomial
orders between 16 and 30 for the estimation of the scaling factor s. We have compared our imple-
mentations with the codes cosmtay, code based on the Taylor polynomial approximation for the
matrix cosine [7], and with cosm, code based on the Padé rational approximation for the matrix
cosine [24].
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3 Experimental results

We have considered the following three groups of matrices to perform the experiments.

TEST 1. 100 diagonalizable 128 × 128-sized matrices. They have been obtained as the result of
A = V · D · V −1, where D is a diagonal matrix (with real and complex eigenvalues) and
matrix V is an orthogonal matrix being V = H/

√
n, where H is a Hadamard matrix and n

its number of rows or columns. As 2-norm, we have that 0.1 ≤ ∥A∥2 ≤ 350.

In Table 4, the percentage of cases in which the relative error commited by cosm−chebyshev
is better or worse than cosmtay and cosm is respectively shown.

E(cosm−chebyshev) < E(cosmtay) 55.00%

E(cosm−chebyshev) > E(cosmtay) 45.00%

E(cosm−chebyshev) = E(cosmtay) 0.00%

E(cosm−chebyshev) < E(cosm) 65.00%

E(cosm−chebyshev) > E(cosm) 35.00%

E(cosm−chebyshev) = E(cosm) 0.00%

Table 4: Relative error comparison between cosm−chebyshev, cosmtay and cosm.

The total number of matrix product was 1431 (cosm−chebyshev), 1205 (cosmtay) and 1409
(cosm), while the total time (in seconds) was 1.50 (cosm−chebyshev), 1.02 (cosmtay) and
2.09 (cosm). Figure (1a) depicts the normwise relative error caused by each method in the
computation of matrices in our test with respect to the exact solution. Figure (1b) plots the
performance profiles. Each point (α, p) on the picture represents the percentage p of matrices,
expressed as a percentage of one, for which the error that takes places in calculating their
cosine by each method in particular is less than or equal to α times the smallest relative error
made by all the codes to be compared.
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Figure 1: Experimental results for Group 1.

TEST 2. 100 Non-diagonalizable 128 × 128-sized matrices. They have been obtained as A =
V ·J ·V −1, where J is a Jordan matrix with complex eigenvalues whose modules are less than
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5 and the algebraic multiplicity is randomly generated between 1 and 4. V is an orthogonal
random matrix with elements in the interval [−0.5, 0.5]. As 2-norm, we have obtained that
3.76056 ≤ ∥A∥2 ≤ 337.715.

In Table 5, the percentage of cases in which the relative error commited by cosm−chebyshev
is better or worse than cosmtay and cosm is respectively shown.

E(cosm−chebyshev) < E(cosmtay) 48.00%

E(cosm−chebyshev) > E(cosmtay) 52.00%

E(cosm−chebyshev) = E(cosmtay) 0%

E(cosm−chebyshev) < E(cosm) 54.00%

E(cosm−chebyshev) > E(cosm) 46.00%

E(cosm−chebyshev) = E(cosm) 0.00%

Table 5: Relative error comparison between cosm−chebyshev, cosmtay and cosm.

The total number of matrix product was 1427 (cosm−chebyshev), 1203 (cosmtay) and 1406
(cosm), while the total time (in seconds) was 1.60 (cosm−chebyshev), 1.09 (cosmtay) and
2.19 (cosm). Figure (2a) depicts the normwise relative error caused by each method in the
computation of matrices in our test with respect to the exact solution. Figure (2b) plots the
performance profiles.
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Figure 2: Experimental results for Group 2.

TEST 3. Matrices from the Matrix Computation Toolbox [25] and from Eigtool MATLAB Pack-
age [26]. For that matrices, we have obtained 1 ≤ ∥A∥2 ≤ 398423.

Table 6 shows the relative error comparison between cosm−chebyshev, cosmtay and cosm.

The total number of matrix product was 536 (cosm−chebyshev), 482 (cosmtay) and 604
(cosm), while the total time (in seconds) was 0.24 (cosm−chebyshev), 0.19 (cosmtay) and
0.43 (cosm). Figure (3a) depicts the normwise relative error caused by each method in the
computation of matrices in our test with respect to the exact solution. Figure (3b) plots the
performance profiles.
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E(cosm−chebyshev) < E(cosmtay) 56.36%

E(cosm−chebyshev) > E(cosmtay) 41.82%

E(cosm−chebyshev) = E(cosmtay) 1.82%

E(cosm−chebyshev) < E(cosm) 81.82%

E(cosm−chebyshev) > E(cosm) 18.18%

E(cosm−chebyshev) = E(cosm) 0.00%

Table 6: Relative error comparison between cosm−chebyshev, cosmtay and cosm.
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Figure 3: Experimental results for Group 3.

4 Conclusions

The implementation based on the Chebyshev series (algorithm cosm−chebyshev) is more accurate
comparing with the most publicized (based on the Padé rational approximation) algorithm cosm.
The cosm−chebyshev algorithm is slightly superior to cosmtay in terms of accuracy. Algorithm
cosm−chebyshev is quite similar in computational cost to cosm, but is more expensive than cosmtay.
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