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1 Introduction

In this work we studied the following parametric family, with its iterative expression:

yk = xk −
2

3

f(xk)

f ′(xk)
, k = 0, 1, . . .

xk+1 = xk −
4

4β(uk − 1)2 + (7− 3uk)uk

f(xk)

f ′(yk)
,

Where x0 is an initial estimate, β is a real or complex parameter and uk = f ′(xk)
f ′(yk)

.
The aim of our project is to examine every aspect of our family, in order to assess the efficiency

of our method in solving nonlinear equations. If you like analogies, we are going to ”squeeze” this
family until we cannot get more relevant information.

We will analyze the convergence of this Iterative Parametric Family and adapt this method for
systems of nonlinear equations.

Additionally, dynamic tools will be used and developed for both scalar and multivariable anal-
ysis. Finally, we will solve applied problems to validate the results of the dynamic study.

2 Analyzed Aspects

2.1 Order of Convergence of our Method

With the help of Wolfram Mathematica 13.2 software we calculated the order of our method for
the scalar version, since Mathematica does not respect the non-conmutativity of operators.

We discovered that, for a specific value of β, this method exhibits 4th-order convergence. In all
other instances, it remains a 3rd-order family.

The final expression of our Taylor Development used to determine the order of convergence is:

ek+1 =
1

9
(16β − 3)C2

2e
3 +

1

27
e4

(
(51− 176β)C3

2 + 3(64β − 21)C3C2 + 3C4

)
+O

(
e5
)

Being ek = xk − x̄ and Ci =
f i(x̄)
f ′(x̄)i! .
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2.2 Non Linear System Version and its Order

Fortunately, our method can be directly extended to equation systems. The reason is quite simple:
all the terms in the denominator of our iterative expression are derivatives. Therefore, in the
vectorial case, these derivatives can be represented as gradients, which can then be transformed
into matrices, specifically inverse matrices, as they are in the denominator. The extension of our
family is:

y(k) = x(k) − 2

3
[F ′(xk)]

−1
F (xk), k = 0, 1, . . .

x(k+1) = x(k) − 4[4β(Uk − In)
2 + (7In − 3Uk)Uk]

−1
([F ′(yk)]

−1
F (xk)),

Where x(0) is an initial estimate vector, β is a parameter (real or complex) and Uk = [F ′(yk)]
−1F ′(xk).

We consider the order of our operations from right to left.

When discussing the convergence order of a nonlinear method, we cannot rely on Mathematica
assistance because, as mentioned earlier, this approach does not preserve the non-commutativity
of operators. Therefore, the convergence order of our method could be altered by such trans-
formations. However, we found that this is not the case in this instance. The final expression
is:

ek+1 = xk+1 − x̄ = xk − x̄− 4[(7I − 3Uk)Uk + 4β(Uk − I)2]−1([F ′(y(k))]−1[F (x(k))]) =

1

9
(−3 + 16β) e3k +O(e4k)

Where In is the identity matrix of size n. We observed that, when using the same value that yields
a 4th-order method in the scalar case, β = 3

16 , we achieved a 4th-order method. In all other cases,
it remained a 3rd-order nonlinear method.

2.3 Computational Efficiency and Ostrowski Index

Computational Efficiency Index (IC):

IC = p
1

d+op .

where:

p : Convergence Order.

d : Number of functional evaluations per iteration.

op : Number of products/divisions per iteration.

Ostrowski Efficiency Index (IO):

IC = p
1
d .

where:

p : Convergence Order.

d : Number of functional evaluations per iteration.
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As demonstrated previously, different values of β result in different Efficiency Index values. Ad-
ditionally, we compared the Efficiency Indexes of our method with those of the Newton Method.
We did this because the Newton Iterative Method is renowned for its exceptional performance in
solving nonlinear systems, and we aim to determine if our method has any relevance in this Area
of Mathematics .

The expressions for the Newton Method are:

ICN = 2
1

1
3n3+2n2+2

3n

ION = 2
1

n2+n

The expression for our method for β = 3
16

ICF14 = 4
1

4n3+5n2 = 2
1

2n3+2.5n2

IOF14 = 4
1

2n2+n = 2
1

n2+0.5n2

Considering n as the number of unknowns, we performed a comprehensive graphical comparison.
Here, ICF14 or IOF14 denote the indexes of our method, while ICN or ION represent the
indexes of the Newton Method.

(a) Comparison IC β = 3
16 . (b) Comparison IO β = 3

16 .

2.4 Stability of Our Method (Dynamic Analysis)

For our Dynamical study, we analyzed the 2nd grade polynomial:

p(x) = (x− a) ∗ (x− b)

After applying our method we obtain:

F14 = x+
(−a+ x)(−b+ x)(3a2 + 2ab+ 3b2 − 8(a+ b)x+ 8x2)2

(16β(a− x)2(b− x)2 + 3(a+ b− 2x)2(3a2 − ab+ 3b2 − 5(a+ b)x+ 5x2)(a+ b− 2((b−4x)x+a(2b+x))
3(a+b−2x) )

Where F14 is the fixed-point operator associated to the iterative expression. We applied the
Möbius transformation (h(z) = z−a

z−b )to obtain a simplified result:

R =
x3(−3 + 16β + 6x+ 9x2)

9 + 6x− 3x2 + 16β ∗ x2
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Here, we encountered a crucial aspect of our study. Up until this point, we believed that the
optimal value for the parameter was β = 3

16 . However, this value fails the Cayley Test. For β = 3
16 :

R =
x4(2 + 3x)

3 + 2x

On the other hand, for β = 3
4 , we obtained an operator that did pass the Cayley Test. This

implies our fixed points correspond to the roots of the polinomial:

R = x3

Fixed Points

Studying our family for a general parameter β we got the following fixed points R(x) = x.

x = −1

x = 0

x = 1

x =
1

3

(
−1− 2i

√
2
)

x =
1

3

(
−1 + 2i

√
2
)

x = ∞

In other words, we have 4 strange fixed points (which are not the roots, 0 or ∞). We characterise
the stability of the fixed points with the derivative of our operator R′(x):
|R′(z∗)| < 1 ⇒ Attractor
|R′(z∗)| > 1 ⇒ Repulsive
|R′(z∗)| = 1 ⇒ Neutral or Parabolic
|R′(z∗)| = 0 ⇒ Superattractor

After studying for which values of β a peculiar point is attractive or repulsive, we constructed
the following plane. The XY-plane represents the complex values of β, while the Z-axis denotes
the value of the R′(x) operator at each peculiar fixed point. Consequently, in the orange zone, it
is less likely that our method converges to the roots:

Figure 2: Total Stability in the Gray Zone.
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Critical Points

Having studied the fixed points, we studied the critical points, where R′(x) = 0, and thus our
family becomes superattractive:

• x=0 (as seen before)

• x=∞ (as seen before)

• cr1 = 1
9

(
− 2

√
−768β3+3088β2−2472β+441√

(16β−3)2
+ 16β

3−16β + 15
3−16β

−2

√
−12288β4−30208β3−432β2+8

(
2
√

(16β−3)2
√

−768β3+3088β2−2472β+441+783
)
β+15

√
(16β−3)2

√
−768β3+3088β2−2472β+441−945

(16β−3)3

)
• cr2 = 1

9

(
− 2

√
−768β3+3088β2−2472β+441√

(16β−3)2
+ 16β

3−16β + 15
3−16β

+2

√
−12288β4−30208β3−432β2+8

(
2
√

(16β−3)2
√

−768β3+3088β2−2472β+441+783
)
β+15

√
(16β−3)2

√
−768β3+3088β2−2472β+441−945

(16β−3)3

)
• cr3 = 1

9

(
+

2
√

−768β3+3088β2−2472β+441√
(16β−3)2

+ 16β
3−16β + 15

3−16β

−2

√
−12288β4−30208β3−432β2+8

(
2
√

(16β−3)2
√

−768β3+3088β2−2472β+441+783
)
β+15

√
(16β−3)2

√
−768β3+3088β2−2472β+441−945

(16β−3)3

)
• cr4 = 1

9

(
+

2
√

−768β3+3088β2−2472β+441√
(16β−3)2

+ 16β
3−16β + 15

3−16β

+2

√
−12288β4−30208β3−432β2+8

(
2
√

(16β−3)2
√

−768β3+3088β2−2472β+441+783
)
β+15

√
(16β−3)2

√
−768β3+3088β2−2472β+441−945

(16β−3)3

)
We only have 2 critical free independent points because:

• cr3 = 1/cr4

• cr1 = 1/cr2

An interesting observation in this section is that, for β = 3
4 , we do not obtain any free critical

points. That is another aspect in favor of using this value of the parameter.
We created an illuminating graphic to clarify the concepts regarding these lengthy expressions

and therefore avoid messy outcomes.

Figure 3: X-Axis are real values of β.
Y-Axis are real values of cri
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2.5 Study of the Dynamic Plane

We studied the different Dynamic Planes that we could generate by giving our parameter different
values. These planes function in the following way. For a specific value of the parameter, we
generated a colorful plane that indicates whether our method is likely to converge to the roots or
not.

• Orange and Blue: It converges to a root.

• Black: It does not converge.

• Other colour: It converges to a strange fixed point.

We can illustrate this with an example to provide a concrete understanding of how it works. In addition,
based on theory, we know that all critical points lie within a region of convergence.

β = 2 case

A black region does not exist and, therefore, our
method will always converge. Nonetheless, it could
converge to a strange fixed point. The critical points
are:

• cr1 = 0.1363 + 0.9907i

• cr2 = cr1

• cr3 = −0.4965 + 0.8680i

• cr4 = cr3

cr1 and cr3 are in the red region, which corresponds to
the points which converge to the strange fixed point
1
3

(
−1 + 2i

√
2
)
. Its conjugates, cr2 and cr4, belong to

the red region of the strange fixed point13
(
−1− 2i

√
2
)
.

β = −3/4 case

The black region belongs to the orbit with period -
0.999 ± 0.0437i. In this case, cr1 and cr2 are not
symbolized with a square in the image, but they are
in the black region. The critical points are:

• cr1 = 1

• cr2 = 1

• cr3 = 0.9556 + 02948i

• cr4 = cr3

The points cr1 and cr2 are located in the basin of
attraction of the periodic orbit. In this case, all critical
points are found in the black region, indicating poor
stability. On the other hand, strange fixed points are
not attractors, which is a point in favor.

2.6 Study of the Parametric Planes

These planes are useful for assessing the stability of the method in terms of the value of the parameter
beta, where the XY-Plane is the complex plane that represents the values that β can take. The more red
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is the region, the more likely we converge to a root, the more black is the region, the more likely is not to
convergence to a root.

Figure 4: Parametric plane for our second inde-
pendent critical point cr2 = 1

cr1

Figure 5: Parametric plane for our fourth inde-
pendent critical point cr4 = 1

cr3

3 Results

3.1 Data of Execution of our Family

In this work, it is essential to test our method before proceeding with any further analysis or study. Therefore,
we executed our method considering the results obtained previously.
We tested our method with this particular example to verify its general validity.

F (x1, x2) = (ex1ex2 + x1 cos(x2), x1 + x2 − 1) ,

One solution to this system is :

x̄ ≈
(

3.47063096
−2.47063096

)
.

Table 1: Numerical tests of our family on the example system

β x(0) Iter ACOC ∥F (xk+1)∥ Sol

3/4 [3;−1] 5 3.2112 0.0 [3.4706;-2.4706]

3/16 [3;−1] 5 3.7374 0.0 [3.4706;-2.4706]

1+2i [3;−1] 7 2.9730 1.7286e-38 [3.4706;-2.4706]

-3/2 [3;−1] 5 2.5376 4.4409e-16 [3.4706;-2.4706]

−5− 5i [3;−1] 2905 0.9993 NaN [NaN;NaN]

3 + 2i [3;−1] 57 NaN NaN [NaN;NaN]

3/4 [10;−10] 5 3.0801 1.0214e-14 [11.7624;-10.7624]

3/16 [10;−10] 5 2.0256 1.0214e-14 [11.7624;-10.7624]

1+2i [10;−10] 7 1.6533 1.0214e-14 [11.7624;-10.7624]

-3/2 [10;−10] 6 Inf 7.6383e-14 [59.1654;-58.1654]

−5− 5i [10;−10] 3000 0.997 7.7636 [NaN;NaN]

3 + 2i [10;−10] 7 3.0110 1.0214e-14 [11.7624;-10.7624]
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3

4 Conclusions

In conclusion, after conducting the entire study and all the numerical tests, we determined that the ideal
value for our method was β = 3/16. As we have observed, it exhibits the best behavior when solving non-
linear systems, has an order of 4, lies within the red zone (indicating good stability), and its computational
efficiency is only slightly lower than that of β = 3/4, and so would hardly make a difference. β = 3/4 would
be the second-best option for our parameter. For β = 3/16, our method would be almost as efficient as the
Newton method.

(a) Comparison of I.C for β = 3/4 and β = 3/16 (b) Comparison I.O for β = 3/4 and β = 3/16

A noteworthy aspect of our work is that values of β promoting convergence in second-degree polynomial
roots also support convergence in other systems. This enables cautious extrapolation of findings from simple
polynomials, such as p(x) = (x − a)(x − b), to potentially more complex nonlinear systems. However,
exceptions may arise.
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