
On the use of Euler polynomials to approximate the

hyperbolic matrix cosine

José M. Alonso♮1, Emilio Defez∗ and Javier Ibáñez∗

(♮) Instituto de Instrumentación para Imagen Molecular,
(∗) Instituto de Matemática Multidisciplinar,

Universitat Politècnica de València. Camino de Vera s/n, 46022, Valencia, Spain.

1 Introduction

Coupled partial differential systems are frequent in many different scientific and engineering fields.
For instance, coupled hyperbolic systems appear in microwave heating processes [1] and optics [2].
The exact solution of these problems is given in terms of matrix hyperbolic sine and cosine functions
[3]. In control theory and dynamical systems, the matrix hyperbolic cosine is used to analyze the
stability of linear systems. For example, the response of a linear system to a perturbation can
be described using matrix hyperbolic functions [4]. In theoretical physics, the matrix hyperbolic
cosine appears in the context of the time evolution of quantum systems and in the solution of
time-dependent Schrödinger equations [5]. In the field of artificial intelligence, particularly in the
design of neural network architectures, matrix hyperbolic functions have found applications in
normalization and stabilization of models training [6].

For a matrix A of dimension r × r, the matrix hyperbolic cosine cosh(A) is defined using the
Taylor series of the hyperbolic cosine function [8]:

cosh(A) =
∞∑
k=0

A2k

(2k)!
. (1)

Alternatively, it can be defined in terms of matrix exponential functions as

cosh(A) =
eA + e−A

2
. (2)

Clearly, this second alternative would be computationally more expensive owing to the need to
compute the exponential of two matrices.

Recent Hermite or Bernoulli-based approximations to matrix hyperbolic cosine function can be
found in [9] and [10]. In this paper, two new numerical methods to compute this matrix hyperbolic
function by means of Euler polynomials have been designed and implemented. Numerical experi-
ments to evaluate their computational performance have been also performed.

1jmalonso@dsic.upv.es

Modelling for Engineering & Human Behaviour 2024

2 Euler polynomials

According to [7], Euler polynomials En(x) are defined as the coefficients of the generating function

g(x, t) =
2etx

et + 1
=

∑
n≥0

En(x)

n!
tn , |t| < π. (3)

Euler polynomials En(x) has the explicit expression

En(x) =

n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k

, (4)

where Ek represents the Euler number defined as Ek = 2kEk(1/2). Euler numbers satisfy that

E2n = 1−
n∑

k=1

(
2n

2k − 1

)
22k(22k − 1)

2k
B2k , E2n+1 = 0, n ≥ 0, (5)

where B2k stands for the 2k-th Bernoulli number.
On the other hand, it is well-known that the exponential of a matrix A ∈ Cr×r can be computed

by means of the series expansion

eAt =
et + 1

2

∑
n≥0

En(A)tn

n!
, |t| < π, (6)

where the nth Euler matrix polynomial is defined by the expression

En(A) =
n∑

k=0

(
n

k

)
Ek
2k

(
A− 1

2
I

)n−k

. (7)

Using Euler polynomials, numerical methods to approximate the matrix exponential eA and
matrix cosine cos(A) were respectively developed in [11] and [12].

From expression (6), it can be obtained that

cosh (A) =
1

2
(cosh (1) + 1)

∑
n≥0

E2n(A)

(2n)!
+

1

2
sinh (1)

∑
n≥0

E2n+1(A)

(2n+ 1)!
. (8)

Note that in the development of cosh (A) by means of the expression (8), all Euler polynomials are
needed (not just the even-numbered), unlike what occurs with Taylor or Hermite polynomials-based
approaches.

Notwithstanding, it can be addressed as well that

cosh (A) = cosh (1/2)
∑
n≥0

E2n

(
A+ 1

2I
)

(2n)!
, (9)

where only even terms appear.

3 The proposed algorithms

By truncating series (8), the m-th order Euler approximation to the matrix hyperbolic cosine is
obtained. For the sake of simplicity in exposition, m will be assumed to be even:

cosh (A) ≈ Pm(A) =
1

2
(cosh (1) + 1)

m/2∑
n=0

E2n(A)

(2n)!
+

1

2
sinh (1)

m/2−1∑
n=0

E2n+1(A)

(2n+ 1)!
, (10)

Modelling for Engineering & Human Behaviour 2024

where Pm(A) is a polynomial of order m whose coefficients p
(m)
k vary according to the polynomial

degree:

Pm(A) =

m∑
k=0

p
(m)
k Ak.

In a similar way and in accordance with (9), we get that:

cosh (A) ≈ P̄m(A) = cosh (1/2)

m/2∑
n=0

E2n

(
A+ 1

2I
)

(2n)!
, (11)

where P̄m(A) is now a polynomial of order m whose all odd-order coefficients are equal to 0.
Directly from formulas (10) and (11) and together with the scaling and squaring technique,

two novel numerical algorithms have been designed, with the specific objective of computing the
matrix hyperbolic cosine. For the efficient evaluation of the above matrix polynomials in terms of
response time, the Paterson-Stockmeyer algorithm will be used.

4 Numerical experiments

It is intended to compare the numerical and computational performance of the new algorithms
with those implementations already present in the literature. In this sense, a set of numerical
experiments have been carried out using the following MATLAB codes:

� cosmh−euler−ataf: this is an implementation of the algorithm that arises from the expres-
sion (10). It uses absolute forward errors and polynomial orders from 42 to 56.

� cosmh−euler−etab: it consists of a development starting from the formula (11). It employs
absolute backward errors and polynomial orders from 25 to 42.

� coshmber−ataf and coshmber−etrf: they correspond to the coding of Algorithms 1 and 2
described in [10] to compute the matrix hyperbolic cosine by means of Bernoulli polynomials.
They use absolute and relative forward errors, respectively.

� coshmtayher: this code is in charge of approximating the hyperbolic cosine by means of the
Hermite polynomials, as described in [9].

� funmcosh: this is a small function that directly calls the MATLAB built-in function funm to
approximate the matrix hyperbolic cosine. Function funm is based on a Schur decomposition
with reordering and blocking, and a block recurrence of Parlett [13].

The test battery used to compare the performance of above codes consists of a series of 128×128
matrices grouped into the following three types of sets:

� Set 1: 100 diagonalizable complex matrices generated as A = V · D · V −1, where V is an
orthogonal matrix and D is a random diagonal matrix with complex eigenvalues. The 2-norm
of the matrices took values from 0.1 to 350.

� Set 2: 100 non-diagonalizable complex matrices computed as A = V · J · V −1. V is an
orthogonal matrix and J is a Jordan matrix with complex eigenvalues. The 2-norm ranged
from 3.76 to 339.11.

� Set 3: 36 matrices from the Matrix Computation Toolbox [14] and 8 from the Eigtool
MATLAB Package [15]. Their 2-norm varied from 1 to 5428.98.

Modelling for Engineering & Human Behaviour 2024

Table 1: Improvement percentages of cosmh−euler−ataf with respect to the rest of the codes, for
the 3 sets of matrices.

Set 1 Set 2 Set 3

Er(cosmh−euler−ataf)<Er(cosmh−euler−etab) 72% 72% 58.14%
Er(cosmh−euler−ataf)>Er(cosmh−euler−etab) 28% 28% 41.86%
Er(cosmh−euler−ataf)=Er(cosmh−euler−etab) 0% 0% 0%

Er(cosmh−euler−ataf)<Er(coshmber−ataf) 78% 80% 76.74%
Er(cosmh−euler−ataf)>Er(coshmber−ataf) 22% 20% 20.93%
Er(cosmh−euler−ataf)=Er(coshmber−ataf) 0% 0% 2.33%

Er(cosmh−euler−ataf)<Er(coshmber−etrf) 80% 86% 55.81%
Er(cosmh−euler−ataf)>Er(coshmber−etrf) 20% 14% 44.19%
Er(cosmh−euler−ataf)=Er(coshmber−etrf) 0% 0% 0%

Er(cosmh−euler−ataf)<Er(coshmtayher) 72% 74% 58.14%
Er(cosmh−euler−ataf)>Er(coshmtayher) 28% 26% 41.86%
Er(cosmh−euler−ataf)=Er(coshmtayher) 0% 0% 0%

Er(cosmh−euler−ataf)<Er(funmcosh) 100% 100% 95.35%
Er(cosmh−euler−ataf)>Er(funmcosh) 0% 0% 4.65%
Er(cosmh−euler−ataf)=Er(funmcosh) 0% 0% 0%

The normwise relative error Er(A) committed by each of the codes will be measured as indicated
below:

Er(A) =
∥ cosh(A)− c̃osh(A)∥2

∥cosh(A)∥2
,

where cosh(A) and c̃osh(A) represent, on the one hand, the exact solution and, on the other hand,
the approximate solution obtained by each of the codes.

For each of the 3 sets of matrices, Table 1 shows the percentage of cases in which the normwise
relative error incurred by code cosmh−euler−ataf is lower, higher or equal than that of the other
codes used in the comparison. Broadly speaking, it can be appreciated that cosmh−euler−ataf
is the function that offered the most accurate results, improving the rest of the codes from 72% to
100% of the cases for the matrices of Sets 1 and 2. For the matrices of Set 3, this improvement
ranged from 55.81% to 95.35%.

Figures 1, 2 and 3 depict the results of the numerical experiments, respectively for the three
types of matrices. In this way, Figures 1a, 2a and 3a show the relative error assumed by each of the
codes. The solid line in these graphs represents the relative error expected a priori in each matrix
computation. Thus, it is an clear estimate of the numerical method stability. Although results
slightly above are accepted as valid, they will be better the further below the line. Obviously, for
Sets 1 and 2, all the codes presented values below the mentioned line, except for funmcosh. For Set
3, it can be seen how a few matrices exceeded the expected value regardless of the code applied,
being much more evident once again for funmcosh.

Figures 1b, 2b and 3b display the so-called performance profile. Each point of this graph
indicates, expressed as a percentage of one, the percentage of matrices for which the relative error
committed by each method is less than or equal to α times the smallest relative error achieved
by any of the methods used in the comparison. It is therefore desirable to reach the highest
values of the picture at any point of it to become the method that obtains the most accurate

Modelling for Engineering & Human Behaviour 2024

0 20 40 60 80 100

Matrix

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

R
e
la

ti
v
e
 e

rr
o
r

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

cond*u

(a) Normwise relative error.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

p

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(b) Performance profile.

Codes
0

0.5

1

1.5

2

2.5

3

3.5

4

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(c) Execution time (in seconds).

Figure 1: Results for Set 1.

0 20 40 60 80 100

Matrix

10
-15

10
-10

10
-5

10
0

R
e
la

ti
v
e
 e

rr
o
r

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

cond*u

(a) Normwise relative error.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

p

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(b) Performance profile.

Codes
0

2

4

6

8

10

12

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(c) Execution time (in seconds).

Figure 2: Results for Set 2.

Modelling for Engineering & Human Behaviour 2024

0 5 10 15 20 25 30 35

Matrix

10
-20

10
-15

10
-10

10
-5

10
0

R
e
la

ti
v
e
 e

rr
o
r

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

cond*u

(a) Normwise relative error.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

p

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(b) Performance profile.

Codes
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o

n
d

s
)

coshm_euler_ataf

coshm_euler_etab

coshmber_ataf

coshmber_etrf

coshmtayher

funmcosh

(c) Execution time (in seconds).

Figure 3: Results for Set 3.

results. We can see that cosmh−euler−ataf was the code that presented values in the top part
of most of these graphs, as expected according to the results collected in Table 1. With respect
to cosmh−euler−etab, it can be stated that it offered results that were almost as accurate as the
best of the other codes included in the experiments. Obviously, funmcosh was the most imprecise.

Finally, Figures 1c, 2c and 3c are in charge of reporting the execution times in the computation of
the hyperbolic cosine of the matrices that compose the testbed. As we can appreciate, coshmtayher
was the code with the shortest response time, followed by cosmh−euler−ataf. Slightly higher com-
putation times were achieved by cosmh−euler−etab. The codes based on Bernoulli polynomials
occupied intermediate positions, with funmcosh certainly being the slowest one.

5 Conclusions

The matrix hyperbolic cosine plays an important role in several areas of applied mathematics,
with applications ranging from control theory to quantum mechanics and machine learning. In
this paper, two numerical methods related to the matrix hyperbolic cosine computation by means
of Euler polynomials have been described. Both methods have been implemented and they have
been numerically and computationally compared with distinct state-of-the-art codes. It has been
noticed that one of the presented methods improved all other codes in terms of accuracy, with very
competitive execution times. The other proposed method was somewhat slower, but its results was
as accurate as those of the best of the other codes.

Last but no least, it should be emphasized that the fact of providing accurate, robust and effi-
cient methods in the calculation of the matrix hyperbolic cosine not only enriches the mathematical
theory, but also its practical applications in a multitude of scientific and engineering disciplines.

Modelling for Engineering & Human Behaviour 2024

Acknowledgments

This work has been supported by the Vicerrectorado de Investigación de la Universitat Politècnica
de València (PAID-11-22 and PAID-11-23).

References

[1] Pozar, D., Microwave Engineering. New York, Addison-Wesley, 1991.

[2] Das, P., Optical Signal Processing. New York, Springer, 1991.

[3] Jódar, J., Navarro, E., Posso, A., Casabán, M., Constructive solution of strongly coupled con-
tinuous hyperbolic mixed problems. Applied Numerical Mathematics, 47(3-4):477–492, 2003.

[4] Van Loan, C. F., The ubiquitous Kronecker product. Journal of Computational and Applied
Mathematics, 123(1-2):85–100, 1976.

[5] Dieci, L., Papini, A., Computation of the matrix exponential via parabolic and hyperbolic
contours. Numerische Mathematik, 62(4):451–463, 1992.

[6] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. MIT Press, 2016.

[7] Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark C.W. (Eds.), NIST handbook of mathemat-
ical functions hardback and CD-ROM. Cambridge University Press, 2010.

[8] Higham, N. J., Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, 2008.

[9] Defez, E., Ibáñez, J., Peinado, J., Alonso-Jordá, P., Alonso, J.M. New Hermite series ex-
pansion for computing the matrix hyperbolic cosine. Journal of Computational and Applied
Mathematics, 408, 114084, 2022.

[10] Alonso, J.M., Ibáñez, J., Defez, E., Alvarruiz, F. Accurate approximation of the matrix hy-
perbolic cosine using Bernoulli polynomials. Mathematics, 11(3), 520, 2023.

[11] Alonso, J.M., Ibáñez, J., Defez, E., Alonso-Jordá, P. Euler polynomials for the matrix expo-
nential approximation. Journal of Computational and Applied Mathematics, 115074, 2023.

[12] Alonso, J.M., Defez, E., Ibáñez, J., Sastre, J. On the use of Euler polynomials to approximate
the matrix cosine. Modelling for Engineering and Human Behaviour 2023, 427–433, 2023.

[13] Davies, P.I., Higham, N.J. A Schur–Parlett algorithm for computing matrix functions. SIAM
Journal on Matrix Analysis and Applications, 25(2), 464–485, 2003.

[14] Higham, N.J. The Matrix Computation Toolbox. 2002. Available online:
http://www.ma.man.ac.uk/ higham/mctoolbox.

[15] Wright, T.G. Eigtool, Version 2.1. 2009. Available online:
http://www.comlab.ox.ac.uk/pseudospectra/eigtool.

	On the use of Euler polynomials to approximate the hyperbolic matrix cosine
	Introduction
	Euler polynomials
	The proposed algorithms
	Numerical experiments
	Conclusions

