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Á. Carmona♭, A.M. Encinas♭, M.J. Jiménez♭ and À. Mart́ın♭1
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1 Introduction

We aim to generalize the transition probability matrix for a random walk on finite networks by
defining the transition probabilities through a symmetric M -matrix. This new model will have
special importance in applications where it is necessary to consider the possible different properties
of each network node that models the random walk. We call it Schrödinger random walk. Unlike
most models for random walks, which are based on the fact that in each step the walker moves
from one node to another differently and they do not include the probability of remaining at a
state, the Schrödinger random walk contemplates this possibility.

For this model, we consider the well-known parameters, mean first passage time, and Kemeny’s
constant, which provide a deep description of networks. As we explained, these parameters can
be written using a new matrix we introduce to describe our model. We will call it generalized
Schrödinger matrix, and it turns out to be symmetric and positive semidefinite, so it is an M -
matrix.

Furthermore, we show that it is possible to express these two parameters using the so-called equi-
librium measure and the equilibrium matrix, a Green matrix for the M -matrix mentioned above.

2 Schrödinger random walks

The work context is a connected network Γ. The set of vertices, also called states, is V , with
|V | = n, and the set of edges E, with |E| = n. To each adjacent pair of vertices, x ∼ y, we assign
a conductance c(x, y) > 0, defined by the function c : V × V −→ [0,+∞). The degree of vertex x
is k(x) =

∑
y∈V

c(x, y), where k ∈ C(V ), being C(V ) the set of real functions on V . Finally, a weight

is a positive function ω ∈ C(V ) such that
∑
x∈V

ω(x)2 = 1.

Because we give an order on V , it is possible to identify operators with matrices and functions

with vectors. In particular, k =
(
k1, k2, . . . , kn

)T
is the degree column-vector for Γ. Du will denote

the diagonal matrix whose elements are given by the vector u and given a matrix X, we denote by
Xd the diagonal matrix whose diagonal elements are given by the diagonal of X. Hence, suppose
that V =

{
x1, x2, . . . , xn

}
, then we will consider cij = c(xi, xj) and we denote by Ac the adjacency
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matrix.

The combinatorial Laplacian is identified with the symmetric irreducible matrix

L =


k1 −c12 . . . −c1n

−c12 k2 . . . −c2n
...

...
. . .

...
−c1n −c2n . . . kn

 ,

where ki = k(xi), i = 1, . . . , n. This matrix is diagonally dominant and, hence, it is positive
semidefinite. Moreover, it is singular and L111 = 000, where 111 is the all ones vector.

A standard diffusion process in a network Γ = (V,E, c) defines a time-invariant ergodic Markov

chain with transition probability matrix P = (pij), where pij =
cij
ki

represents the probability of

transition, in one step, from vertex xi to vertex xj . It is well known that any ergodic Markov chain

has a stationary distribution verifying πTP = π, being πi =
ki

vol(Γ)
, see [3].

In a general situation, in addition to cij , it is necessary to take into account the node property
ωj = ω(xj) when the walker moves to vertex xj from xi. In this case, the transition probability
matrix is given by

pij =
cijωj
n∑

ℓ=1

ciℓωℓ

, (1)

and hence the stationary probability at state xi is πi =

ωi

n∑
ℓ=1

ciℓωℓ

n∑
s,t=1

cstωtωs

.

We are interested in positive semidefinite Schrödinger operators. So, we set λ ≥ 0, a weight
ω ∈ Ω(V ) and their associated potential defined as q = qω + λ, where the potential determined by
ω is defined by the vector

(
qω

)
i
= −ωωω−1

i (Lωωω)i is . The matrix associated with Lλ,ω = L+ Dq is

Lλ,ω =


k1 + q1 −c12 . . . −c1n
−c12 k2 + q2 . . . −c2n
...

...
. . .

...
−c1n −c2n . . . kn + qn

 = Dk+q − Ac, (2)

with ki + qi = λ+
1

ωi

n∑
j=1

cijωj . This matrix is symmetric, positive semidefinite, and singular when

λ = 0. Moreover, Lλ,ω ωωω = λωωω. When λ = 0 and ωωω is constant, we recover the standard combina-
torial Laplacian.

In the work, we will consider Schrödinger random walks that were introduced in [6] by some of the
authors and studied more deeply in [3]. This model’s probability depends on ωi, ωj and λ. Hence,
and keeping in mind the case given by (1), we can write, for any xi, xj ∈ V ,

pij =

(
cij + λωiωj

)
ωj(

ki + qi
)
ωi

=

(
cij + λωiωj

)
ωj

λωi +
n∑

ℓ=1

ciℓωℓ

. (3)
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Moreover, with this model, the probability of remaining at vertex xi is non-negative,

pii =
λω2

i

ki + qi
.

So, the probability laws governing the evolution of a Schrödinger random walk are given by the
(one step) transition probability matrix with respect to λ and ω, Pλ,ω ∈ Mn(R), that we can define
as

Pλ,ω = D−1
kω

(
Ac + λωωωωωωT

)
Dωωω,

where we denote by kω = (Ac + λI)ωωω, the vector whose components are (ki + qi)ωi.

Taking into account the previous definitions, πππλ,ω ∈ Rn can be defined for each xi ∈ V as

(
πλ,ω

)
i
=

(ki + qi)ω
2
i

λ+
n∑

j,ℓ=1

cjℓωjωℓ

. (4)

We call volume of Γ, the value vol(Γ) = λ+
n∑

j,ℓ=1

cjℓωjωℓ, that can be written as vol(Γ) = ωωωTkω.

Lemma 1 The transition probability matrix is reversible, Markovian, with πππλ,ω as stationary dis-
tribution.

The main tool for our study will be the matrix

Fλ,ω = Lλ,ω − λωωωωωωT,

which is symmetric and positive semidefinite. Therefore 0 is a simple eigenvalue of Fλ,ω and ωωω is
the unique unitary vector such that Fλ,ωωωω = 0. Under these assumptions, we shall be concerned
with the so-called Poisson equation for Fλ,ω on V :

Given f ∈ Rn find u ∈ Rn such that Fλ,ωu = f. (5)

The Poisson equation with data f has a solution iff ⟨ωωω, f⟩ = 0 and the solution is unique up to a
multiple of ωωω.

We call Generalized Inverse of Fλ,ω or 1-inverse of Fλ,ω any n matrix assigning to any f ∈ ωωω⊥ a
solution of the Poisson equation Fλ,ωu = f. So, because the solution for any Poisson equation is
not unique, there are an infinite number of generalized inverses of Fλ,ω and it is well known, for
instance [1, Theorem 2.2], that a matrix G is one of them if and only if it satisfies the identity

Fλ,ωGFλ,ω = Fλ,ω, (6)

and any generalized inverse of Fλ,ω is either non singular or 0 is a simple eigenvalue.

The notion of generalized inverses of Fλ,ω encompasses a special type of 1-inverses that are the
discrete analog of the so-called Green matrix for Fλ,ω. Specifically, we call Green matrix any
1-inverse, generically denoted by G, such that

Fλ,ωG = I−ωωωωωωT; (7)

which is equivalent to the fact Gωωω = αωωω, α ∈ R. In particular, we call Group inverse, denoted by
F#λ,ω, the unique Green matrix verifying F#λ,ωωωω = 0.
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The group inverse matrix is symmetric positive semidefinite. Therefore, F#λ,ω establishes an auto-

morphism of ωωω⊥ such that

Fλ,ωF
#
λ,ω = F#λ,ωFλ,ω = I−ωωωωωωT and F#λ,ωFλ,ωF

#
λ,ω = F#λ,ω.

3 MFPT and Kemeny’s constant for Schrödinger random walks

In the paper Random Walks associated with symmetric M -matrices, see [3], the authors focus on
the study of the Kemeny’s constant and, previously, the Mean first passage time, for Schrödinger
random walks through the use of 1-inverses. For this, we were interested in obtaining the expression
of any generalized inverse of the matrix Fλ,ω, verifying the condition Gkω = gωωω, in terms of its

group inverse, F#λ,ω. Moreover, we studied these expressions according to the properties verified by
the generalized inverse.

Remember that the short-term behavior of a Schrödinger random walk is modeled by the mean
first passage time (concerning λ and ω), MFPT for now,

(
mλ,ω

)
ij
, for i, j = 1, . . . , n, i ̸= j; that is,

if the system starts in xi, MFPT is the expected number of time-steps before the system reaches
xj , (

mλ,ω

)
ij
= E

[
t | Xt = xj , X0 = xi

]
,

where E[·] denotes the expected value of the variable. We can write MFPT in a matrix form as(
I− Pλ,ω

)
Mλ,ω = J− P(Mλ,ω)d. (8)

Besides, the mean recurrence time for state xi,
(
mλ,ω

)
ii
, is the expected number of time steps

before we return to xi for the first time, for any i = 1, . . . , n and its value is
1

(πλ,ω)i
.

Proposition 1 Let Γ be a network, then the mean first passage time matrix Mλ,ω, can be written
as

Mλ,ω= D−1
ωωω GDkωJ−

(
D−1
ωωω GDkωJ

)⊤
+ vol(Γ)

(
D−1
ωωω D−1

kω
− D−1

ωωω GD−1
ωωω + JD−1

ωωω GdD
−1
ωωω

)
.

In addition, for 1-inverses such that Gkω = gωωω, being g a constant, we obtain

Mλ,ω = vol(Γ)
(
D−1
ωωω D−1

kω
− D−1

ωωω GD−1
ωωω + JD−1

ωωω GdD
−1
ωωω

)
.

Now, we will consider the well-known parameter associated with a random walk, Kemeny’s constant.
It represents the time for reaching a random state xj , starting from an initial state xi according to
the stationary distribution. In our case, we define Kemeny’s constant (with respect to λ and ω) as
the value

K(Mλ,ω) =

n∑
j=1

(
mλ,ω

)
ij
(πλ,ω)j .

In the standard case, it is known that K does not depend on xi, hence the name Kemeny’s constant.
In a matrix-vector form, it is written as Mλ,ωπππλ,ω = K(Mλ,ω)1.

Under the conditions of the next proposition, we can derive a new equation for K(Mλ,ω) involving
the group inverse of Fλ,ω.
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Proposition 2 If G is a 1-inverse of Fλ,ω such that Gkω = gωωω, Kemeny’s constant is given by

K(Mλ,ω) = 1− g + tr(GDq+k). (9)

Indeed, we have the proposition below.

Proposition 3 In terms of the group inverse of Fλ,ω, F
#
λ,ω, Kemeny’s constant is given by

K(Mλ,ω) = 1 + tr(F#λ,ωDk+q)− vol(Γ)−1kω
TF#λ,ωkω. (10)

4 Equilibrium Measure for Schrödinger random walks

In addition to this description of Kemeny’s constant in terms of any 1-inverses, we will express
it using a specific Green matrix for Fλ,ω. This new matrix will be defined from the concept of
equilibrium measure.

So, given a vertex subset F ⊂ V , it can be considered a function νFλ,ω ∈ C(F ) such that Lλ,ω(ν
F
λ,ω) =

ω. We will call that function equilibrium measure of F concerning λ and ω. Moreover, νFλ,ω is

unique and νFλ,ω > 0, on F . Additionally, the value capλ,ω(F ) = ⟨ω, νFλ,ω⟩ is called capacity of F .

The equilibrium measure and the capacity of the set V \{xi} are denoted by νiλ,ω and by capλ,ω(xi).

From the definition of νiλ,ω and capλ,ω(xi), we will consider what we will call equilibrium matrix
with respect to λ and ω, Eλ,ω, which can be demonstrate is a Green matrix for Fλ,ω. Then, we will
obtain explicit expressions for MFPT regarding the equilibrium measure and Kemeny’s constant
with respect to the equilibrium matrix.
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