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Abstract. The topic of mixing the weighted average means (WAM) and ordered weighted
average (OWA) operators has been studied in agonizing detail. It has become one of the most
prominent ways to extend OWA operators. Mixed indices using both approaches must use two vec-
tors of weights. Whereas the focus of weights associated with WAM is on the values, the weights
associated with OWA focus on order. This work studies how two weights can be combined to
produce one single operator sharing traits from both WAMs and OWAs. This operator takes the
form of a Choquet integral defined by a 2-additive capacity.
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1.1 Introduction

Since Yager [28] introduced the ordered weighted average (OWA) operators to aggregate a vector
of numbers by a single number, many authors have strived to produce increasingly refined versions,
which in many cases involve the utilization of a second vector of weights. This work will also be
motivated by the use of two weight vectors. Initially, Torra [23] added the benefits of weighted
average means (WAM) to the equal treatment of all values that is intrinsic to OWAs, which are
symmetric. This blend produced the successful WOWA operators [4, 25], that have been extended
to the continuous case [24] and exported to soft computing models [3]. Other authors followed suit
to produce unified operators with these two competing approaches, including [6], [14], and [22].

Choquet integrals encompass both aggregation operators [9]. This theory builds on the concept
of capacity [19]. Capacities are known as fuzzy measures too. They are set functions which are
monotonic and vanish on the empty set [21]. Informally, they relax the additivity property of
measures to monotonicity. WAMs and OWAs arise when the capacity that defines the Choquet
integral is either additive or symmetric, respectively. It is no surprise that this class of aggregation
operators has supported other attempts to unify WAMs with OWAs. And also, that the Choquet
integral has found applications to many areas such as welfare economics [10], social choice [1], soft
computing [2], or bibliometrics [26].

In relation with this issue, Yager and Alajlan [29, Sect. 4] suggested the utilization of capacities,
plus an aggregation attitudinal function and a quasi-arithmetic generating function, for generalizing
importance weighted mean aggregation. The utilization of semi-uninorms in conjunction with two
vectors of weights has produced SUOWAs [15, 16, 17]. They consist of Choquet integrals associated
with capacities that use semi-uninorms and the values of capacities corresponding to weighted
arithmetic means and OWAs. They are different from WOWAs [15], which can nevertheless be
expressed as a Choquet integral too. Llamazares [18] insisted on the ability of the Choquet integral
to generalize both WAMs and OWAs with the help of capacities designed from two vectors of
weights and appropriate functions.
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We show in this work how two vectors of weights can produce a non-additive Choquet inte-
gral constructed from a 2-additive capacity. By confining ourselves to this class of capacities, we
eliminate the requirement for additional external elements as those reported above.

Our construction of a set function from the two vectors is explicit. Whenever this set function
becomes the Möbius inverse of a (2-additive) capacity, it defines a discrete Choquet integral that we
call the joint Choquet index defined from two vectors of weights. The set functions that are Möbius
inverse of a capacity are completely identified [8]. With this characterization we set forth sufficient
conditions for the two vectors of weights to return a joint Choquet index. Then we explore the
properties of this construction and its limitations. We find that under certain circumstances, the
index behaves as a sum of WAM and (modified) OWA on a restricted domain of vectors. Examples
illustrate the utilization of this technique.

In conclusion, we can therefore relate the possibility of generalizing WAMs through a second
vector of weights with the Choquet integrals defined from 2-additive capacities. An advantage of
our index with respect to an unrestricted Choquet integral is that it needs few parameters, and
at the same time, it leverages the important Choquet aggregation operator with the advantages of
two independent sets of weights.

1.2 Background

We shall assume that the set X = {1, . . . , n} represents a list of indicators. The goal is to produce
evaluations of numerical values indexed by X, with certain properties related to those of the next
two aggregation procedures:

Definition. Let w = (w1, . . . , wn) ∈ [0, 1]n be a weighting vector such that
∑n

i=1wi = 1. The
weighted average mean (WAM) associated with w is the following function WAMw : Rn −→ R

WAMw(a1, . . . , an) =
n∑
i=1

wi ai, for every a = (a1, . . . , an) ∈ Rn. (1.1)

Definition (Yager [28]). Let v = (v1, . . . , vn) ∈ [0, 1]n be a weighting vector such that
∑n

i=1 vi =
1. The ordered weighted averaging (OWA) operator associated with v is the following function
Ov : Rn −→ R

Ov(a1, . . . , an) =
n∑
i=1

vi bi, for every a = (a1, . . . , an) ∈ Rn. (1.2)

In this expression, bi is the i-th largest element in the collection of (possibly repeated) values
{a1, . . . , an}. This means that when a↘ = (a[1], . . . , a[n]) is a non-increasing permutation of a, then
bi = a[i].

Very important for our exercise is the next concept:

Definition. A discrete capacity on X is a set function µ : 2X −→ [0, 1] that is monotonic (i.e.,
µ(A) 6 µ(B) whenever A ⊆ B ⊆ X) and satisfies µ(∅) = 0, µ(X) = 1.

Although the term ‘capacity’ was coined by Choquet [9], Sugeno [21] independently defined the
same notion under the name fuzzy measure.

A (discrete) capacity µ is additive when in case that A,B ⊆ X are disjoint, then the equality
µ(A ∪ B) = µ(A) + µ(B) holds true. Additive capacities are measures. Besides, µ is symmetric
when µ(A) = µ(B) provided that A,B ⊆ X and |A| = |B|.

It has been argued that “[p]erhaps the most successful subfamily [of capacities] is the subfamily
of k-additive measures, and inside this subfamily, the most appealing case is the case of 2-additive
measures” (Miranda and Garćıa-Segador [20]). The main reason is computational tractability. To
define a capacity on X we need 2n − 2 numbers that in addition, must satisfy the mandatory
monotonicity constraints. Many researchers have produced simplified but flexible expressions of a
capacity, and to this purpose the k-additive capacities have proven to be especially reliable. With



∑k
i=1C

i
n evaluations one can to define a k-additive capacity [13]. This concept can be given a

compact definition with the help of the Möbius inverse [11], an operator that returns the capacity
that produced it through the Zeta transform. Let us define the operator that we need in this work:

Definition [12, Def. 2.30]. The Möbius inverse of the discrete capacity µ is the unique
solution to the set of equations

µ(X ′) =
∑
A⊆X′

mµ(A), for each X ′ ⊆ X. (1.3)

This solution is given by the next set function mµ on X:

mµ(X ′) =
∑
A⊆X′

(−1)|X
′\A|µ(A), for each X ′ ⊆ X.

Equation (1.3) defines the Zeta transform of mµ.
Additive capacities are characterized by having Möbius inverses whose evaluations on sets with

more than one element are null [12, Th. 2.33]. In a similar vein, the next extension of additivity
has been defined:

Definition (Grabisch [11]). A discrete capacity µ on X is k-additive when a subset of X with
cardinality k exists whose evaluation by mµ is not zero; and for all X ′ ⊆ X with k+ 1 elements or
more, the evaluation of X ′ by mµ is zero.

Additive capacities coincide with 1-additive capacities by the aforementioned [12, Th 2.33].
Note that any 2-additive capacity is totally determined by the values that it attains on singletons

and doubletons, since we have

µ(X ′) =
∑
i6=j

i,j∈X′

µ({i, j})− (|X ′| − 2)
∑
i∈X′

µ({i}), for each X ′ ⊆ X.

Some simple computations demonstrate that n (n+1)
2 values suffice to define a 2-additive capacity

on a set with n elements.
When mµ is the Möbius inverse of a 2-additive capacity µ,∑

i6=j
i,j∈X

mµ({i, j}) = 1−
∑
i∈X

µ({i})

Which mappings with the right structure m : 2X −→ R behave as a 2-additive capacity on X?
The next result gives a precise answer:

Theorem (Chateauneuf and Jaffray [8]). The set-valued function m : 2X −→ R is the Möbius
inverse of a capacity µ on X if and only if the next two conditions hold true:

1. m(∅) = 0 and ∑X′⊆X m(X ′) = 1.

2. For each X ′ ⊆ X and j ∈ X ′:
∑

j∈A⊆X′ m(A) > 0.

Since we need to apply this test to secure 2-additive capacities, it is worth stating that the
second restriction becomes in this case:

2. For each X ′ ⊆ X and j ∈ X ′:
∑

i∈X′ m({i, j}) > 0.

The latter condition in particular imposes m({i, j}) + µ({j}) > 0 for all i, j (which is the
application of the property to the case X ′ = {i, j} and j). The restriction enforces monotonicity
of µ defined from m by the Zeta transform, whereas (1) assures the boundary conditions (i.e.,
µ(∅) = 0 and µ(X) = 1).

Capacities define Choquet integrals as follows:

Definition (Choquet [9]). The discrete Choquet integral with respect to the capacity µ is
Cµ : Rn+ −→ R where Cµ(a1, . . . , an) =

∑n
j=1

[
a(j) − a(j−1)

]
µ(Lj), and a↗ = (a(1), . . . , a(n)) is a



non-decreasing permutation of a = (a1, . . . , an), we let a(0) = 0, and Lj = {(j), . . . , (n)} is the set
of indices of the n− j + 1 largest components of a.

It is also remarkable that there is an explicit correspondence between WAMs (resp., OWAs)
and Choquet integrals defined from additive (resp., symmetric) capacities [12, Th. 4.63] also [17,
Rem. 3]. Especially for our needs, the WAM defined from w = (w1, . . . , wn) ∈ [0, 1]n on Rn+ is the
Choquet integral with respect to the additive capacity µw such that µw({i}) = wi for all i ∈ X.

1.3 Results
Hereafter we let w = (w1, . . . , wn) ∈ [0, 1]n and v = (v1, . . . , vn) ∈ [0, 1]n be weighting vectors
such that

∑n
i=1wi =

∑n
i=1 vi = 1. Several attempts have been made to combine the WAM and

OWA respectively defined from these vectors. For example:

1. The OWAWA (ordered weighted averaging-weighted average) operator [22] simply uses a
convex combination of both operators: with a new parameter α ∈ [0, 1],

OWAWA(a) = αWAMw(a) + (1− α)Ov(a), for every a ∈ Rn. (1.4)

2. The SDOWA (standard deviation OWA) operator [7] uses the same formula, however the
authors insist that the α weighting parameter should be directly defined from w and v by
their standard deviations: α = sd(w)

sd(w)+sd(v) . This choice guarantees the coincidence with Ov

when w is constant, and coincidence with WAMw when v is constant.

3. The HWA (hybrid weighted average) operator [27] composes the OWA defined from w with
a function directly defined from the other vector v: the application on a ∈ Rn is

HWA(a) = OWAv(nwa) = OWAv(nw1a1, . . . , nwnan).

4. The JWA (joint weighted average) operator [6] allows the weights to interact. As in the case
of SDOWA, it does not introduce further parameters. To apply JWA on a ∈ Rn, one writes
a↘ = (a[1], . . . , a[n]) is a non-increasing permutation of a, then produces the similarly ordered
vector of weights w[a] = (w[1], . . . , w[n]), and applies the formula

JWA(a) = (w[a] ⊕ v)a↘ (1.5)

where ⊕ is defined as in compositional geometry, i.e.,

x⊕ y =
( x1y1∑n

i=1 xiyi
, . . . ,

xnyn∑n
i=1 xiyi

)
when x = (x1, . . . , xn), y = (y1, . . . , yn).

We do not recall WOWAs here. Suffice to say that this concept uses an interpolation function, in
addition to two vectors of weights. And also that the result depends on the interpolation function,
which is not uniquely determined.

1.3.1 The joint Choquet index: definition and sufficient conditions

We proceed to study the properties of a proposal that requires the introduction of neither further
parameters nor external functions. By doing so we avoid the problem of eliciting the corresponding
additional factor.

Definition. Let P =
∑

i6=j(wiwj−vivj)
(n2)

. Define the set function mw,v on X as follows:

mw,v(X ′) =


0, when X ′ = ∅ or X ′ ⊆ X, |X ′| > 2

wi, when X ′ = {i} for some i ∈ X,
wiwj − vivj − P, when X ′ = {i, j} for some i, j ∈ X, i 6= j.



Definition. Whenever mw,v defines a capacity µw,v, we say that the Choquet integral defined by
µw,v is the joint Choquet index associated with w and v.

Note that by definition, the joint Choquet index defined above shares the following property
with the WAM defined from w = (w1, . . . , wn): both are Choquet integrals respectively defined
by capacities µw,w and µw such that µw,w({i}) = µw({i}) = wi for all i ∈ X. The next section
expands on the properties of the joint Choquet index associated with identical vectors.

Using Chateauneuf and Jaffray’s theorem stated above, we can prove that mw,v is the Möbius
inverse of a capacity µw,v under a set of (at most n + 1) sufficient conditions that can be easily
checked.

Proposition 1. Suppose that
(i) P 6 0 (i.e.,

∑
i6=j wiwj 6

∑
i6=j vivj), and

(ii) for all j ∈ X such that wj < vj , it is the case that v2j > vj − wj − wj ·mini6=j wi.
Then mw,v is the Möbius inverse of a capacity µw,v.

Proof. The definition of mw,v guarantees that property 1 in the characterization holds true.
To prove property 2, we fix X ′ ⊆ X and j ∈ X ′. We need to check

∑
i∈X′ mw,v({i, j}) > 0.

Direct computations show that
∑

i∈X′ mw,v({i, j}) = mw,v({j}) +
∑

j 6=i∈X′ mw,v({i, j}) > 0 is
equivalent to wj +

∑
j 6=i∈X′(wiwj − vivj) > P (|X ′| − 1), or wj(1 +

∑
j 6=i∈X′ wi)− vj

∑
j 6=i∈X′ vi >

P (|X ′| − 1).
Suppose first wj−vj > 0. Then wj(1+

∑
j 6=i∈X′ wi)−vj(

∑
j 6=i∈X′ vi) > wj−vj > 0 > P (|X ′|−1).

Now suppose wj − vj < 0. Using
∑

j 6=i∈X′ vi 6
∑

j 6=i∈X vi = 1− vj , we have

wj

(
1 +

∑
j 6=i∈X′

wi

)
− vj

( ∑
j 6=i∈X′

vi

)
> wj

(
1 +

∑
j 6=i∈X′

wi

)
− vj(1− vj) > wj + wj ·min

i6=j
wi − vj + v2j

and assumption (ii) guarantees the conclusion wj +wj ·mini6=j wi − vj + v2j > 0 > P (|X ′| − 1). �

In the next sections we show that neither condition (i) nor the set of conditions (ii) are necessary.

1.3.2 Properties of the joint Choquet index

We proceed to state several properties of the joint Choquet index. These properties add to the
standard properties derived from the fact that it is defined as a Choquet integral (e.g., compen-
sativeness, monotonicity, idempotency, or positive homogeneity of degree 1). They help us find
similarities with WAMs and their combinations with OWAs.

1. For each i ∈ X, µw,v({i}) = mw,v({i}) = wi. This assignment is mandatory for capacities
producing additive Choquet integrals that coincide with the WAM defined from w [12, Eq.
(4.77)].

2. In the particular case where w = v, the joint Choquet index associated with w and v is
well defined and it coincides with WAMw = WAMv. Note that P = 0 and (ii) above holds
vacuously. In fact, mw,v({i, j}) = 0 when i 6= j, proving additivity.

3. More particularly, when w = v = ( 1
n , . . . ,

1
n), the joint Choquet index associated with w and

v coincides with the simple average mean (i.e., the arithmetic average). And this is the only
OWA operator defined as a joint Choquet index associated with two vectors.

4. When v is such that vi = 1 for some i, then µw,v is additive if and only if it is symmetric.
And in this case, w = ( 1

n , . . . ,
1
n), therefore the joint Choquet index associated with these

vectors is the arithmetic average too.

5. When w is such that wi = 1 for some i, then the only capacity µw,v that is additive is the
Dirac measure centered at i. It is defined by

µw,v(X ′) =

{
1, when i ∈ X ′,
0, otherwise

(cf., [12, Sect. 2.2])



exactly through the vector of weights v = ( 1
n , . . . ,

1
n).

In this case, [12, Cor. 4.64 (iii)] assures that the joint Choquet index associated with these
vectors is the projection on the i-th coordinate. Of course, it is the WAM associated with w.

Importantly, (ii) in Proposition 1 is contradicted when n > 2, thus proving that the set of
requirements (ii) is not necessary.

6. Suppose w = ( 1
n , . . . ,

1
n), and vi + vj = 1 for some i 6= j. Then the joint Choquet index

associated with w and v is well defined, and at every a ∈ Rn+ with ai · aj = 0, it attains the
value

WAMw(a) + vi · (1− vi) ·OWAn with n =
(n− 1(

n
2

) ,
n− 2(
n
2

) , . . . ,
1(
n
2

) , 0).
7. Suppose v = ( 1

n , . . . ,
1
n), and wi + wj = 1 for some i 6= j. Then the joint Choquet index

associated with w and v is well defined, and at every a ∈ Rn+ with ai · aj = 0, it attains the
value

WAMw(a)− wi · (1− wi) ·OWAn with n =
(n− 1(

n
2

) ,
n− 2(
n
2

) , . . . ,
1(
n
2

) , 0).
The proofs of the last two properties exploit the formula that produces the Choquet integral

when the capacity is 2-additive, to wit:

Cµ(a) =
n∑
i=1

mµ({i}) · ai +
∑
{i,j}⊆N

mµ({i, j}) ·min{ai, aj}

for each a = (a1, . . . , an). This formula derives from the general expression of a Choquet integral
from the Möbius inverse of the capacity that defines it [5, Sect 2.6].

1.3.3 Numerical examples

The next example illustrates the application of the set of sufficient conditions provided in Propo-
sition 1 in a case with n = 4.

Example 1. Suppose w = (0.4, 0.2, 0.15, 0.25) and v = (0.3, 0.3, 0.2, 0.2). Then
∑

i6=j wiwj =
0.3575 < 0.37 =

∑
i6=j vivj , which accounts for (i) in our set of sufficient conditions.

Also, to check (ii), note that w1 > v1 and w4 > v4. We only need to do simple computations
for i = 2 and i = 3. And indeed,

v22 > v2 − w2 − w2 ·minj 6=2wj because 0.32 > 0.3− 0.2− 0.2 · 0.15, or 0.09 > 0.07, and
v23 > v3 − w3 − w3 ·minj 6=3wj because 0.22 > 0.2− 0.15− 0.15 · 0.2, or 0.04 > 0.2.
Therefore the next standard presentation defines mw,v, which must be the Möbius inverse of a

capacity (we use four-digit approximations):

0
0 0 0 0

-0.0067 -0.0167 0.0633 -0.0367 0.0033 -0.0067
0.4 0.2 0.15 0.25

0

Now the Zeta transform produces the 2-additive capacity µw,v from this expression. It can be
represented as follows:

1
0.64 0.96 0.84 0.56

0.5933 0.4833 0.7633 0.2633 0.5033 0.3933
0.4 0.2 0.15 0.25

0



Remark. These arrangements replicate the Hasse diagram of the inclusion relation defined on the
parts of X.

One pending issue is whether condition (i) in Proposition 1 is necessary. The next example
proves that this is not the case.

Example 2. With n = 3, suppose w = (0.4, 0.35, 0.25) and v = (0.5, 0.3, 0.2). Then
∑

i6=j wiwj =

0.3275 > 0.31 =
∑

i6=j vivj , and P = 0.0175
3 ≈ 0.00583 > 0. We can routinely define mw,v as follows:

0
-0.01583 -0.00583 0.02167

0.4 0.35 0.25
0

Now the Zeta transform produces a 2-additive capacity µw,v, namely:

1
0.734167 0.644167 0.621667

0.4 0.35 0.25
0

1.4 Conclusions

We have explored the properties of a way to combine two vectors of weights with the help of the
Choquet integral. There are similarities of the joint Choquet index that has been defined, with both
weighted average means and (to a lesser degree) ordered weighted average operators. Although
joint Choquet indices generalize weighted average means, we cannot extend OWAs in general: the
average mean is the only OWA operator produced by a joint Choquet index defined as in this work.

Further research might disclose the exact conditions under which the joint Choquet index is
well defined. Interpretations of the roles of the two vectors of indices are also worth investigating
to fully grasp the abilities of this index.
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