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Camı́ de Vera s/n, València, Spain.
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1 Introduction

The problem of finding the roots of a non-linear equation g(x) = 0, where g : D ⊆ R −→ R, is one
of the oldest problems in numerical approximation. The most common method for solving non-
linear equations is the well-known Newton’s method, whose convergence is quadratic. Sometimes
it is necessary to solve nonlinear equations that have one or more multiple roots. In these cases
the iterative methods with good properties to find simple roots present convergence problems. It
is therefore necessary to use iterative methods specifically designed to find multiple roots. An
example of this issue is Newton’s scheme, whose convergence is reduced to linear when used for
solving non-linear equations with multiple roots, as Lagrange realised in 1808. One modification on
Newton’s method was proposed by Schröder [1] in 1870, where the convergence remains quadratic
by using the iterative expression

xn+1 = xn −m
g(xn)

g′(xn)
, n = 0, 1, . . .

Multiple roots α of multiplicity m satisfy g(α) = g′(α) = g′′(α) = · · · = g(m−1)(α) = 0, and
g(m)(α) ̸= 0. In this work we consider iterative methods to approximate this kind of roots.

There are many methods in the literature of different order of convergence to find the multiple
roots of g(x) = 0, many of them designed from the combination of multiple-root methods or
combinations of multiple-root methods with single-root methods. Most of these methods require
the evaluation of first-order or first and second-order derivatives. It is well known that the presence
of derivatives in the iterative expression reduces the applicability of the method to certain problems,
so we focus on designing derivative-free methods.

Another objective in the design is the optimality in the sense of the Kung-Traub conjecture [2].
It points that the order of convergence p of a method without memory that performs d different
functional evaluations per iteration meets p ≤ 2d−1; the method is called optimal when p = 2d−1.
According to the conjecture, there are few optimal iterative methods for multiple roots in the
literature.
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Focusing on the design of derivative-free schemes, one of the derivative-free techniques is the
Traub–Steffensen [3] type scheme, which replaces g′ in Newton’s iterative method by an approxi-
mation of the form

g′(xn) ≈
g(xn + βg(xn))− g(xn)

βg(xn)
= g[wn, xn],

where wn = xn + βg(xn), β ∈ R − {0}, and g[wn, xn] =
g(wn)− g(xn)

wn − xn
denotes the first-order

divided difference operator.
Recently, Kumar et al. [4] presented the second-order optimal scheme defined as:

xn+1 = xn −G(θn), n = 0, 1, . . . , (1)

where G(θ) : D ⊂ C −→ C is a weight function and θ =
g(x)

g[w, x]
. Let us remark that Traub-

Steffensen method is the particular case G(θ) = θ of (1).
In this work, a new scheme of optimal iterative derivative-free methods is proposed to find

multiple roots. The two-step procedure is designed starting from Traub-Steffensen method and
using the technique of weight functions. The complete design process is shown in Section 2.
Section 3 covers a numerical analysis, presented by applying some members of the proposed scheme
to different non-linear functions and comparing the results with other existing methods in the
literature. Finally, the conclusions of this work are shown in Section 4.

2 Iterative scheme with weight function

Taking as a starting point the iterative scheme with a weight function (1) but using a different
divided difference based on w = x + βg(x)2, the proposed multipoint iterative scheme with two
steps is

yn = xn −m
g(xn)

g[wn, xn]
,

xn+1 = xn −m
g(xn)

g[wn, xn]
H(tn),

n = 0, 1, . . . , (2)

where t =

(
g(yn)

g(xn)

)1/m

.

It is observed that the iterative family (2) is obtained from the composition of the Traub-
Steffensen method modified twice, including in the second step of the algorithm a weight function
H dependent on the variable t. Using Taylor series expansions, it can be shown that family
of iterative schemes (2) has order of convergence 4 whenever H(0) = H ′(0) = 1, H ′′(0) = 4 and
|H ′′(0)| < ∞. Let us remark that the number of functional evaluations per iteration in such scheme
is three, resulting in an optimal class. In addition, a family of iterative schemes free of derivatives
is proposed, resulting in a different iterative method for each value of the selected parameter and
the weight function used.

3 Numerical experiments

This section is devoted to the performance of some members of the iterative scheme (2). These
members are tested to verify their functionality when solving non-linear equations.

Two members of family (2) are considered. We denote by M1 the method obtained using the
polynomial weight function H(t) = 2t2+ t+1 and by M2 the method corresponding to the rational

weight function H(t) =
−t+ 1

−2t+ 1
.
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In order to evaluate the proposed methods M1 and M2, their results are compared with existing
methods in the literature that include derivatives. The first one is the iterative scheme proposed
by Sharma [5], based on Jarratt scheme for simple roots and denoted in this work by Ss. Also, the
one described by Behl et al. [6], denoted by Bh, designed from the arithmetic mean of Chebyshev’s
method [3] for simple zeros and Schröder’s method. Moreover, the performance is also compared
with two derivative-free methods. The first one was developed by Kumar et al. [7]. The first step
yn is the Traub-Steffensen method setting β = 1

100 and the second step is

xn+1 = yn −H(tn)
g(xn)

g[wn, xn] + 2g[wn, yn]
, n = 0, 1, . . . , (3)

where t =

(
g(y)

g(x)

) 1
m

and H(t) = (m + 2) t
1−2t . Method (3) has been denoted by KK. The second

method for the comparison was presented by Behl et al. [8]. The first step yn is the Traub-Steffensen
method setting β = 1

100 and the second step is

xn+1 = xn −H(tn)
g(xn)

g[wn, xn]
, n = 0, 1, . . . , (4)

where t =

(
g(y)

g(x)

) 1
m

, s =

(
g(y)

g(w)

) 1
m

and H(t) = (1 + t)
(
t
2 − 1− s

2 − 2s2
)
. Method (4) has been

denoted by BB.

The non-linear functions selected for the numerical tests are

� g1(x) = x3 − 5.22x2 + 9.0825x − 5.2675, with a double root α1 = 1.75 and a single root
α2 = 1.72.

� g2(x) =
(
e−x − 1 + x

5

)3
, with a root of multiplicity three α ≈ 4.96511423174428.

Numerical experiments have been carried out using Matlab R2023a software and variable precision
arithmetic with 10000 digits. Despite the expressions of w differ from our method with respect
to the others, we also have selected β = 1

100 . Furthermore, since it is an iterative process, we use
|xn+1 − xn| + |g(xn)| < 10−200 as a stopping criterion with a maximum of 50 iterations. If after
this amount of iterations the method has not converged will be denoted by –.

Table 1 shows the numerical performances for comparing the methods. The table shows the
number of iterations necessary to obtain the root (iter) from the initial condition x0, the estimated
errors |xn+1 − xn|, residual errors of the considered function |g(xn)| and the approximate order of
computational convergence ACOC [9].

Numerical results evidence the competitiveness of the proposed methods with respect with those
present in the literature. Specifically, for function g1(x), all methods achieve convergence with few
iterations and with high accuracy for any initial guess. Also, the ACOC obtained is the same as
the theoretical order of convergence for each method. Regarding function g2(x), iterative methods
with derivatives do not always converge, and the proposed methods are the least iterate-consuming
to reach the solution. It is observed that for the initial estimate x0 = 4.4 the ACOC is not a
good estimate of the order of convergence of the methods due to the difference between the last
iterations of each algorithm. However, the last column reveals that good accuracy is still obtained
with few iterations. The results improve greatly with x0 = 5.2, obtaining for the derivative-free
methods very close approximations to the solution of the non-linear function. Therefore, we can
consider that M1 and M2 iterative schemes selected in this numerical experiments provide good
approximations to the multiple roots of both problems in an efficient way.
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Table 1: Numerical results for solving non-linear problems.

Function x0 Method Iter ACOC |xn+1 − xn| |g(xn+1)|

g1

1.9

Ss 7 4.0 3.63e–615 3.95e–1231
Bh 7 4.0 8.19e–562 2.01e–1124
KK 6 4.0 4.81e–209 6.94e–419
BB 7 4.0 1.40e–604 5.87e–1210
M1 7 4.0 9.52e–537 2.72e–1074
M2 7 4.0 1.38e–776 5.70e–1554

3

Ss 8 4.0 2.39e–556 1.71e–1113
Bh 8 4.0 9.85e–487 2.91e–974
KK 7 4.0 3.25e–216 3.17e–433
BB 8 4.0 5.44e–530 8.89e–1061
M1 8 4.0 2.52e–450 1.90e–901
M2 7 4.0 4.10e–204 5.05e–409

g2

4.4

Ss – – – –
Bh 12 2.0 1.92e–255 3.65e–765
KK 7 5.99 1.76e–405 3.92e–1217
BB 7 5.99 4.05e–404 4.77e–1213
M1 7 5.99 1.09e–402 9.36–1209
M2 7 5.99 2.27e–405 8.46e–1217

5.2

Ss – – – –
Bh – – – –
KK 5 4.0 8.73e–505 4.79e–1515
BB 5 4.0 9.36e–502 5.89e–1506
M1 5 4.0 1.03e–498 7.79e–1497
M2 5 4.0 1.02e–504 7.58e–1515

4 Conclusions

In this work, a fourth-order family of optimal and derivative-free iterative schemes is presented.
To design the proposed class, the modified Traub–Steffensen type scheme has been taken as the
first step and in the second step a weight function has been incorporated. To check the efficiency
of the iterative family, two weight functions are selected, one polynomial and the other rational,
giving rise to iterative methods M1 and M2. The performance of these two members of the family
are analysed in comparison with other existing methods in the literature for solving non-linear
equations with multiple roots. The numerical implementation shows that the methods M1 and M2
selected from the proposed scheme are competitive compared to existing robust methods in the
literature in terms of absolute error difference between two iterations, absolute residual error and
computational order of convergence.
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project MERLIN.



Modelling for Engineering & Human Behaviour 2024

References
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