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1 Introduction

In recent years, there has been a surge of interest in hybrid approaches that combine the strengths
of different algorithms to tackle complex optimization problems. Among these hybrids, the fusion
of the Particle Swarm Optimization (PSO) algorithm with the Newton-Raphson type methods
has emerged as a promising strategy [4]. The Particle Swarm Optimization [3] is a population-
based metaheuristic algorithm, inspired by the social behavior of bird flocking or fish schooling, is
renowned for its simplicity, effectiveness, and ability to handle non-linear, non-convex optimization
problems. The algorithm is given below.

In PSO, position of the particle i is adjusted as:

xt+1
i = xti + vt+1

i ,

and velocity of the particle i is updated as follows:

vt+1
i = ωvti + c1r1

(
pt(i,lb) − xti

)
+ c2r2(p

t
gb − xti).

Here ωvti is the momentum part or inertia component that represents the memory of previous

flight direction. It prevents particles from drastically changing direction. c1r1

(
pt(i,lb) − xti

)
is the

cognitive part that represents the memory of previous best position, and it quantifies performance

relative to past performances. c1r1

(
pt(i,lb) − xti

)
is the social part that quantifies performance

relative to neighbors.
pt(i,lb) is the personal best position of ith particle in t generation. Assume minimization problem.

pt+1
(i,lb) =

{
xt+1
i , if f

(
xt+1
i

)
< f(pt(i,lb))

pt(i,lb), otherwise

ptgb is the global best position in t generation which is calculated as

ptgb ∈
{
pt(1,Best), . . . , p

t
(N,Best) / f

(
ptgb

)
= min{f(pt(1,Best)), . . . , f(p

t
(N,Best))}

}
,
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where N is the number of particles in the swarm.

In spite of its global search properties, PSO exhibits limitations in terms of premature con-
vergence and poor exploration-exploitation balance in high-dimensional search spaces [3,6,7]. On
the other hand, the Newton-Raphson type methods excel in finding the local minima of smooth
functions by iteratively adjusting the step size based on function evaluations.

Some hybrid techniques are given in [5] while recently a hybrid PSO-Newton-Raphson approach
[4] is presented in solving nonlinear optimization problems. By integrating PSO’s population-based
search with Newton-Raphson’s local refinement, the algorithm achieved improved convergence
speed and solution quality compared to standalone methods.

Despite these aspects, challenges remain in optimizing the hybrid algorithm’s parameters and
adapting it to various optimization domains. Further research directions could include investigat-
ing hybridization strategies with higher order methods such as Jarratt method [2]. Additionally,
comparative studies against other hybrid optimization techniques could provide deeper insights
into the strengths and weaknesses of the PSO-Jarratt approach.

This paper presents a novel hybrid approach merging the Particle Swarm Optimization (PSO)
algorithm with the Jarratt method tailored to address the complexities of solving the nonlinear
systems of equations. The PSO algorithm, known for its global search capability, is integrated
with the Jarratt method, renowned for its local convergence properties. This hybridization aims
to capitalize on the strengths of both methods, enhancing the efficiency and effectiveness of solv-
ing nonlinear problems. The proposed hybrid algorithm’s performance is evaluated on various
benchmark functions such as Rosenbrock function, six-hump camelback function [1] and a system
of nonlinear equation demonstrating superior convergence speed and accuracy compared to tradi-
tional methods. Experimental results underscore the efficacy of the hybrid approach in tackling
complex problems, offering promising avenues for future research and practical applications.

2 Hybrid Jarratt-Particle Swarm Algorithm

Hybrid Jarratt-Particle Swarm Algorithm (JPSO)

Start

Input

N - swarm size

T - maximum number of iterations

Bounds- bounds of the search space

Output

The best position(solution) ptgb
Step 1: Solution representation

Step 2: Input: t := 1 (Generation counter), Maximum allowed iterations= T

Step 3: Initialize random swarm p(t)

Step 4: While t ≤ T

update pt(i,lb) of each particle i and find ptgb;

for (i = 1, i ≤ N, i++)

update velocity vt+1
i

update position xt+1
i

update position using Jarratt method

Evaluate xt+1
i and include it in p(t+ 1);

End for

t = t+ 1

End while
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3 Numerical Experiments

We consider the following test problems to compare the performance of Jarratt, PSO and JPSO
method. The values of the inertia weight, cognitive weight and social weight are taken as 0.5, 0.8
and 0.9 respectively. The number of particles is taken as 5. The tolerance is considered as 10−3.
We mention the comparative results at the iteration where the JPSO converges to the optimal
solution.

Test Problem 1:
x31 − 3x1x

2
2 − 1 = 0,

3x21x2−x32 + 1 = 0,

subject to bounds −5 ≤ x1 ≤ 5 and −5 ≤ x2 ≤ 5.

Table 1. Comparison for the Test Problem 1

Methods Best Position Best Value

No. of Iteration: 10

PSO [1.110919,−0.240698] 0.053731

Jarratt Method [−0.290515, 1.084215] 20.712385

PSO-Jarratt [1.084215,−0.290515] 0.000455

Table 2. Performance of PSO for the Test Problem 1

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [1.145176,−0.565898] 1.287907 [1.237393,−0.391572] [1.110919,−0.240698]

2 [1.428309,−0.191608] 3.280796 [1.257908,−0.284077] [1.110919,−0.240698]

3 [1.189688,−0.334861] 0.268395 [1.110692,−0.240698] [1.110919,−0.240698]

4 [0.566174,−0.556423] 3.459169 [0.974425,−0.258412] [1.110919,−0.240698]

5 [1.386964,−0.256123] 2.377395 [1.145234,−0.371235] [1.110919,−0.240698]

Table 3. Performance of JPSO for the Test Problem 1

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [1.084215,−0.290515] 0.000455 [1.084215,−0.290515] [1.084215,−0.290515]

2 [1.084215,−0.290515] 0.000455 [1.084215,−0.290515] [1.084215,−0.290515]

3 [1.084215,−0.290515] 0.000455 [1.084215,−0.290515] [1.084215,−0.290515]

4 [1.084215,−0.290515] 0.000455 [1.084215,−0.290515] [1.084215,−0.290515]

5 [1.084215,−0.290515] 0.000455 [1.084215,−0.290515] [1.084215,−0.290515]

Test Problem 2: Rosenbrock Function

min f (x1, x2) = 100
(
x2 − x21

)2
+ (1− x1)

2,

subject to bounds −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.
The optimal solution is x = (1, 1)T and the minima is f (x1, x2) = 0.

Table 4. Comparison for Rosenbrock Function

Methods Best Position Best Value

No. of Iteration: 1

PSO [1.207601, 1.406602] 0.310380

Jarratt Method [0.441653,−0.004478] 4.293178

PSO-Jarratt [1.0, 1.0] 0.0
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Table 5. Performance of PSO for Rosenbrock Function

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [1.572778,−0.440653] 849.632099 [1.245025,−0.891511] [0.734826, 1.557518]

2 [1.207601, 1.406602] 0.310379 [1.292653,−0.482471] [0.734826, 1.557518]

3 [1.174108, 1.675703] 8.861529 [0.734826, 1.557518] [1.207601, 1.406602]

4 [−0.274909, 0.387011] 11.324649 [−1.836006,−0.901647] [1.207601, 1.406602]

5 [−0.542806,−0.215216] 28.375325 [−1.142840,−1.024995] [1.207601, 1.406602]

Table 6. Performance of JPSO for Rosenbrock Function

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [1.0, 1.0] 1.24496e− 30 [0.913033,−0.729693] [−0.591929,−0.083947]

2 [1.0, 1.0] 0.0 [0.397187, 0.794623] [1.0, 1.0]

3 [1.0, 1.0] 0.0 [−1.584231,−1.704015] [1.0, 1.0]

4 [1.0, 1.0] 2.0215e− 30 [−0.383914,−1.403466] [1.0, 1.0]

5 [1.0, 1.0] 0.0 [−0.591929,−0.083947] [1.0, 1.0]

Test Problem 3: Six-Hump Camelback Function

The Six-Hump Camelback has six local optima, two of which are global. The global optima are
located at either x = (−0.08984, 0.71266) or x = (0.08984,−0.71266), each with a corresponding
function value equal to f (x) = −1.0316285.

Table 7. Comparison for Six-Hump Camelback Function

Methods Best Position Best Value

No. of Iteration: 3

PSO [−0.058390,−0.252294] −0.210058

Jarratt Method [−0.090221, 0.715655] −1.031555

PSO−Jarratt [0.089842,−0.712656] −1.031629

Table 8. Performance of PSO for Six-Hump Camelback Function

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [−0.365793,−0.532881] −0.119966 [−0.365793,−0.532881] [−0.058390,−0.252294]

2 [0.990940,−1.993692] 47.540045 [−1.179122, 0.337791] [−0.058390,−0.252294]

3 [0.048341, 0.213653] −0.154591 [0.048341, 0.213650] [−0.058390,−0.252294]

4 [−0.058390,−0.252294] −0.210058 [−0.058390,−0.252290] [−0.058390,−0.252294]

5 [−1.4641240, 1.009918] 0.810808 [−1.464124, 1.009920] [−0.058390,−0.252294]

Table 9. Performance of JPSO for Six-Hump Camelback Function

n Particle Current Position Function Value Personal Best Position Global Best Position

1 [−1.109205, 0.768268] 0.543719 [−1.703607, 0.796084] [0.089842,−0.712656]

2 [1.109205,−0.768268] 0.543719 [0.089842,−0.712657] [0.089842,−0.712656]

3 [0.089842,−0.712656] −1.031629 [0.089842,−0.712657] [0.089842,−0.712656]

4 [1.109205, 0.768268] 0.543719 [−1.703607, 0.796084] [0.089842,−0.712656]

5 [−1.638068,−0.228674] 2.229358 [−1.703607, 0.796084] [0.089842,−0.712656]
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4 Conclusion

In conclusion, the fusion of the Particle Swarm Optimization algorithm with Jarratt’s method rep-
resents a compelling synergy of evolutionary and iterative methods paradigms, offering enhanced
performance and versatility across various domains. Continued research efforts are warranted to
fully exploit the potential of this hybrid approach and address the evolving challenges in optimiza-
tion.
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