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1 Introduction

Since its onset in 2020, COVID-19 has inflicted widespread devastation, claiming over 6.9 million
lives globally. Throughout the pandemic, the Centers for Disease Control and Prevention (CDC)
repeatedly extended shelter-in-place directives, fostering the population’s growing distrust in sci-
entific and governmental institutions. This erosion of trust has direly affected patient outcomes, as
individuals increasingly disregarded CDC regulations, leading to heightened fatalities, especially in
communities with lower access to healthcare facilities [1]. To mitigate this crisis, there is an urgent
need for significant advancements in epidemic modeling to enhance our ability to predict infection
rates and refine prevention strategies.

This study introduces a mathematical framework for examining the progression dynamics of the
COVID-19 pandemic during its early stages in Chile. We propose a spatial-temporal epidemio-
logical mathematical model tailored to approximate the pandemic’s initial phase in the country,
incorporating the spatial and temporal diffusion patterns of SARS-CoV-2. The model categorizes
the population into susceptible, infected, and recovered individuals based on their COVID-19 pro-
gression status. Calibration of the model is conducted using real-world data on reported daily cases
spanning 28 weeks (March 10, 2020-September 15, 2020) across Chile’s 16 regions. We pre-process
this data by organizing it into weekly new infections to facilitate data smoothing, a standard
practice in epidemiology.

2 Methods

Chile’s geographical configuration resembles a slender strip nestled between the Pacific Ocean to
the west and the towering Andes mountains to the east. Stretching 4,270 kilometers from north to
south [2], its width averages only about 177 kilometers. Furthermore, the eastern side, dominated
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by the Andes, exhibits sparse population density [3]. Notably, the narrowest segment measures ap-
proximately 66 kilometers, marking Chile as one of the world’s most distinctive territorial shapes.
As of the 2017 census by the Instituto Nacional de Estadisticas of Chile, Chile’s population is
17,574,003 people [4]. Given these geographic features, this study adopts a spatial-temporal math-
ematical model, integrating a single spatial variable representing Chile’s latitude position.

Furthermore, in multiple countries, a trend emerged where individuals relocated from densely pop-
ulated urban regions to sparsely populated rural areas seeking lower-risk environments of SARS-
CoV-2 infection [5].

2.1 Spatial-temporal mathematical model

Let us present the spatial-temporal mathematical model. Consider a bounded domain 2 within R
with a smooth boundary denoted by 0f2. Leveraging the insights from the preceding discussion and
the dynamics of SARS-CoV-2 transmission within the population, we introduce a spatial-temporal
mathematical model outlined as follows:

0S(x,t) g 028 (x,t)
=dy

— B(x,t) S(x,t)I(z,t),x € Q,t >0,

ot Ox?
oI (x,t) 0?1 (x,t)
= t t)I —al Q 1
@0 _ 4, ZIED 4 g ) S )1 (@,0) — a2, € 0,8 >0, 1)
OR(z,t) 9*R(z,t)
5 =ds 92 +al(z,t),z € Q,t > 0.

With initial conditions:

And the boundary condition given by:

0S(z,t)  0I(x,t) OR(z,t)
S = = g = 0.z €80, >0. (3)

The state variables, parameters, and their descriptions are listed in Table 1. It is important to
remark that the values and units of these parameters most be considered and determined carefully.
Notice that the mathematical model (1) includes self-diffusion terms that represent the movements
of individuals modulated by the population densities over the space x. The model, however, does
not include cross-diffusion terms [6].

2.2 Initial conditions

Let us proceed first with some options that can be used for the initial conditions S(x,0), I(x,0) and
recovered R(z,0). The form of the initial condition is crucial for the dynamics since this affects the
transient dynamics and, therefore, the early phase of the COVID-19 pandemic. There are many
options for the initial conditions that are approximations of the real-world scenario. Let N(z) be
a function that relates to the initial population density of Chile where

N(z) = S(z,0) + I(z,0) + R(x,0). (4)

2



Modelling for Engineering & Human Behaviour 2024

Parameter /variable Description
S Susceptible population density
I Infected population density
R Recovered population density
dy Diffusion coefficient for the susceptible population
ds Diffusion coefficient for the infected population
ds Diffusion coefficient for the recovered population
v Parameter related to the infectious period of SARS-CoV-2
154 Transmission rate of SARS-CoV-2

Table 1: State variables, parameters, and their definitions for the spatial-temporal mathematical
model described in (1).

Now, since in the beginning of the early phase of the COVID-19 pandemic, we have almost no
infected or recovered individuals, then R(z,0) = 0 and I(x,0) ~ 0. Hence gets that S(x,0) ~ N(z).
Through this work we will use these approximations for the numerical simulations and results.

Figure 1 shows an example of a piecewise cubic Hermite interpolating polynomial for the ini-
tial condition N(z). Observing the pronounced gradients between areas, particularly noticeable
between the Metropolitan and O’Higgins regions, we predict that this will give us computational
issues. Indeed, as we utilize Matlab to address this model numerically and leverage the pdepe
algorithm [10], we have a computational challenge since this solver with the given initial condition
necessitates a denser grid. Moreover, the values of the integrals of the function N (x) that represent
the population in each region become inaccurate as time increases due to the compound effect of
the large gradients and the diffusion between regions.
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Figure 1: A piecewise cubic Hermite interpolating polynomial that approximates the initial condi-
tion of the infected population in Chile.

Another plausible modeling approach is to approximate the initial conditions by using a Gaus-
sian function in each region where the integral of the Gaussian function approximates the initial
subpopulations S(x,0), I(z,0) and recovered R(z,0). However, this has a main drawback since
this approach generates several discontinuities in the boundaries between the regions in Chile, and
numerical issues might arise. Nevertheless, a better modeling approach is to approximate the initial
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conditions of the subpopulations by a sum of Gaussian functions where each function is centered
in the midpoint or center of each region. This modeling approach solves the discontinuity aspect
but generates an issue with regard to the approximation of the subpopulations in each region.
This issue is because all the Gaussian functions overlap over the whole space that represents Chile.
However, this computational issue can be partially addressed by selecting a variance such that
the overlap between Gaussian functions is small [?]. The smaller the variance the less overlapping
occurs. The variance helps to modulate the overlap and the separation between each region’s main
cities.

Therefore, in this study, one of the modeling approaches that we utilize for the initial condition
is the following

N(z) = Y Niy/2/me 0300/, (5)

where n is the number of regions in Chile, z; are the midpoints of each region ¢ and N; are the
initial population of each region i. The main advantage of this approach is that the function N (x)
is continuous and differentiable. This allows us to guarantee the existence and uniqueness of the
solution of the PDE system (1). In addition, it allows larger population densities in the middle of
the regions in Chile and, therefore, more specific locations for the subpopulations.

3 Results

We present some numerical results when different mathematical modeling approaches are imple-
mented. A variety of approaches are applied in order to get insight into the challenges of the
mathematical modeling of the early phase of the COVID-19 pandemic in Chile. In this work, the
mathematical modeling approaches vary depending on:

e The approximation of the initial conditions.
e The transmission rate.
o The diffusion coefficients.

To numerically solve the spatial-temporal mathematical model (1), as mentioned previously, we
rely on the pdepe built-in Matlab function. It can be shown that in some cases, depending on the
form of the initial conditions and the transmission rate 3(z,t), it is necessary to reduce the space
step Az and the time step At in the pdepe built-in Matlab function.

3.1 Space-variable transmission rate ()

We assume the transmission rate should depend on each region’s population or population density
[8, 7]. Thus, we assume an approximated standard bilinear incidence where the transmission rate
in the PDE system (1) is replaced by

Bla,t) = ]\Bf 2 e 08?0} o

where N; is the total population of the region ¢. This form gives rise to a standard incidence, which
implicitly assumes that an individual has a fixed number of contacts per unit time [9]. In some
way, the terms N; re-scale the Gaussian functions of each region, and therefore, for the regions
with larger populations, the influence of 5 on the transmission is decreased.

Let us distribute the initial population by using the distribution function N (x) given by a sum of
Gaussian functions as presented in Eq. (4). Fig. 2 shows the dynamics of the infected population
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density that results from the numerical simulation of the mathematical model (1) and the real
data from Chile. It can be seen that this mathematical modeling approach is able to generate
a significant amount of infected cases in each region by using a space-variable transmission rate
B(x) across the regions of Chile. Notice that the epidemic wave occurs in all the regions, but
overestimates the real data. We have used a scale factor of k = 3 in order to adjust the peak of the
model in the Metropolitan region to the real data. In some way, this scale takes into account the
fact that there are asymptomatic cases that are not reported and, therefore, are not included in
the real data. In the regions besides the highly dense Metropolitan region, there are large epidemic
waves due to smaller population densities in the neighborhoods of the boundaries between regions.
This latter aspect can be observed in Figure 3, where a great number of infected cases can be seen
in those neighborhoods. For instance, at the first time step, we can see that the infected cases
are distributed as Gaussian functions with mean values located at the middle of the regions, and
then during the simulation, the infected cases shift to the boundaries where the transmission rate
is higher. In the last time step of the simulation, we can see that the infected cases are now located

at the boundaries between regions.

—
*---- Model (Integration) [ _

+-- Data
x10* .
& ¥
E-._
34
k5]
£
=
2 Wi o=
" 20
E Sl o - 10
T e : s
D 0 = oo m B LA
gEfELeclerony
.g?%}e‘:gﬁggsggé’g-g%u Week number
= E 2 ®E O = .0 T =
EFS<5§8r " 03,558
- 2 9Fgs FEETE
8 = =
=
<

Figure 2: Numerical simulation of the spatial-temporal model (1) with space-variable transmission

rate B(z) and low diffusion rate.

3.2 Space-variable transmission rate J(z) in terms of sum of scaled Gaussian

functions

Here we assume that the transmission rate function S(z) is given by a sum of scaled Gaussian
functions. In this way, the transmission rate is larger in the middle of the regions and smaller in
the boundaries. From a real-world viewpoint, this translates to there being more contacts in the
cities and that the cities are closer to the middle of the region. Then the transmission rate function

B(x) is given by
_ . Si —18(z—x;)?
Blz) =P % NoJiR , (7)
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Figure 3: Numerical simulation of the spatial-temporal model (1) with space-variable transmission
rate $(x) and low diffusion rates.

where n is the number of regions in Chile, x; are the midpoints of each region i and N; are the initial
population of each region i. Notice that the parameter $ modulates the transmission rate over the
whole space. Fig. 4 shows the transmission rate function 5(z). Notice that the transmission rate
is larger in the middle of the regions and smaller in the boundaries. Using this modeling approach,
the characterization of the dynamics of the early phase of the COVID-19 pandemic is improved.
Despite all these improvements regarding the spatial-varying transmission rate, the model still
presented some difficulties in describing the decay of the infected cases after reaching the peak of
infected cases. Further improvements can be made by varying the transmission rate with regard
to space and also with respect to time. For instance, the transmission rate can be varied for each
region at different times. This would allow a reduction of infected cases after the peak of cases and
with different decay rates.
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Figure 4: Space-variable transmission rate §(x) in terms of sum of scaled Gaussian functions.



Modelling for Engineering & Human Behaviour 2024

4 Conclusions

In this study, we proposed a spatial-temporal epidemiological mathematical model to approximate
the dynamics of the early phase of the COVID-19 pandemic in Chile. The compartmental model
divides the total population based on the COVID-19 disease progression status and also on the
spatial location. In particular, the model considers susceptible, infected, and recovered individuals.
A system of nonlinear first-order partial differential equations is used for the mathematical model
in order to include spatial and temporal effects. We developed several mathematical modeling
approaches to describe and explain the spatial-temporal data of Chile. The initial conditions
were computed based on the population density of each region of Chile. We tested a variety of
functional forms for the initial conditions. We found that the most suitable form was given by
a continuous function that is composed of a sum of Gaussian functions. We assumed Neumann
boundary conditions at the north and south of Chile due to travel restrictions during the early
phase of the COVID-19 pandemic and the fact that the most southern region of Chile is bounded
by the Antarctic Sea.

We studied a first mathematical modeling approach that considers a space-invariant SARS-CoV-
2 transmission rate. In this approach, the mathematical model presented difficulties in describing
and explaining the real data due to the implicit assumption that all regions have the same trans-
mission rate. For the second modeling approach, we included a spatial-variant transmission rate,
which provides more flexibility to the model and, at the same time, enables us to consider the
possibility that the transmission rates vary depending on the region. Therefore, this approach
improved the previous results obtained with a constant transmission rate. Nevertheless, the model
still has difficulties describing the real epidemic data. We developed several modeling variations
of the spatial-variant transmission rate in this second approach. For instance, we assumed the
classical standard incidence where the transmission rate is inversely proportional to the population
density of each location. This variation created some modeling issues in the boundaries between the
regions since the population density was assumed to be low close to those boundaries. We imple-
mented another variation by modifying the standard incidence with a scale factor that modulates
the transmission rate of each region in such a way that the transmission rate becomes smaller close
to the boundaries as it is expected in the real world. Despite all these improvements regarding the
spatial-varying transmission rate, the model presented some difficulties in describing the decay of
the infected cases after reaching the peak of cases.

Future works can include variations on the spatial-temporal transmission rate in order to allow
the mathematical model to describe more accurately the real COVID-19 dynamics in Chile. For
instance, a modeling approach that uses a transmission rate that varies with space and time can
be more suitable. However, from a strictly mathematical point of view, it might present difficulties
since the transmission rate becomes discontinuous with respect to time. This approach can be very
useful since there are regions where the non-pharmaceutical interventions were not implemented
at the same time, and people’s reactions to these interventions were different depending on social
factors. Therefore, this modeling approach is highly recommended despite the potential non-
practical identifiability of the parameters due to the lack of enough detailed epidemic data.

To summarize, the use of heterogeneous transmission rates across the regions of Chile allows
a better description of the early phase of the COVID-19 pandemic in Chile. In particular, the
modeling approach with a spatial and time-varying transmission rate is the most suitable one. The
results presented in this study show the advantages and challenges of the proposed mathematical
approaches to describe the COVID-19 pandemic in Chile. In addition, the results suggest that
the transmission rates of SARS-CoV-2 in the regions of Chile are different. The results provide
additional insight into the study of COVID-19 pandemics since few studies have explored similar
approaches and even less with real-world data. We have shown that the calibration of the mathe-
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matical model under different scenarios could be very challenging due to the features of the model
and the variety of parameters that affect the dynamics. This study gives further insight into the
COVID-19 pandemic by means of a novel spatial-temporal mathematical modeling approach.
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