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1 Introduction

The description of a physical problem through a model necessarily involves the introduction of
parameters. Hence, one wishes to have a solution of the problem that is a function of all these pa-
rameters: a parametric solution. However, the construction of such parametric solutions exhibiting
localization in space is only ensured by costly and time-consuming tests, for instance numerical
simulations. Numerical methodologies used classically imply enormous computational efforts for
exploring the design space. Therefore, parametric solutions obtained using advanced nonlinear
interpolation are an essential tool to address this challenge.

Interpolation is a mathematical fundamental operation widely used in numerical simulation.
However, despite of its simplicity, usual interpolation does not always yield physical meaningful
results. Optimal Transport (OT) defines a radically different way to interpolate and calculate
distances between functions having disjoint supports. Indeed, while the classical Euclidian inter-
polation leads to a mixture of the two functions (one which progressively disappears and the other
which progressively appears), OT-based interpolation leads to a progressive translation and scal-
ing. Such a numerical solution is much more realistic in several fields, such as, computer graphics
or fluid dynamics, justifying its widespread use. In this sense, Optimal Transport quantifies the
distance between two functions by considering the cheapest way to move all mass units describing
one function to reshape it into the other, taking into account the geometry of the underlying space.
Thus, two almost identical functions differing only by a little displacement are considered to be
very close by the OT approach while they can be considered as very dissimilar by the usual L1 or
L2 norms. Today, Optimal transport has a wide range of applications, such as, computer vision,
image processing and machine learning.

However, computing optimal transport is usually numerically expensive and not adapted to
online approaches since it is usually performed by sampling from the source and target distribu-
tions and solving then a discrete linear programming problem which results numerically costly and
statistically inefficient. Indeed, classical linear programming approaches to OT scale roughly with
cubic complexity. Some approaches have been developed in order to alleviate such an issue but
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remain very restrictive working only in specific frameworks: e.g., a semi-discrete approach with La-
guerre’s cells or a dynamical formulation. It can also be noted that entropy regularized approaches
to solve OT have been developed. In particular, Sinkhorn’s algorithm involves only matrix-vector
products and allows the regularized distance to be a smooth function of all its parameters.

Despite of the recent advances to solve OT, the problem remains numerically expensive and not
accessible in online applications. Therefore, our goal is to propose a parametric model based on
Optimal Transport and accessible in an online manner that allows to interpolate between several
simulations of a parametric problem in real time and following the motion-based interpolation that
characterizes OT. Based on displacement interpolation, the method developed here approaches the
interpolation problem as an optimal mass transport problem where each unit of mass describing
the source distribution needs to be transported to the target distribution while minimizing the
total cost associated to the transport. For two distributions, the problem can thus be written in
terms of bipartite graph matching. The paths taken by each unit of mass are parameterized and
an interpolated solution can thus be accessed by partially displacing the mass along the paths at
given values of the parameters. To this purpose, a parametric model is built offline relying on
Smoothed-Particle Hydrodynamics decomposition and Model Order Reduction.

The approach introduced here proceeds in two stages: an offline non-intrusive training of the
parametric OT-based model, followed by an online application of the model in the parametric
space. Indeed, high-fidelity simulations of the parametric problem are used to train the model
without any need of an insight of the problem equations, hence the non-intrusive terminology.

First, in order to train the model, high-fidelity simulations are used in the offline stage. These
simulations belong to a parametric space where our parametric problem is defined. The offline stage
proceeds in several steps: first, the high-fidelity simulations of the training set are decomposed into
the sum of elementary identical Gaussians. Then, each Gaussian from each simulation is paired
with one Gaussian of every other simulation in order to respect Optimal Transport behavior.
A Genetic Algorithm is employed in order to approximate the k-Dimensional Matching problem
obtained. Next, a sparse Proper Generalized Decomposition (sPGD) regression is applied over the
coefficients of the Proper Orthogonal Decomposition (POD) of the matrix of snapshots, which have
just been decomposed into Gaussians, in order to create the parametric model.

Then, this model can be evaluated in the parametric space of the problem in the online stage
leading to a partial advection of all the Gaussians. Summing all those Gaussians allows to recon-
struct, in real-time, the high-fidelity simulation interpolated in this point of the parametric space
following the Optimal Transport theory.
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