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1 Introduction

Gravitational wave (GW) astronomy is now well-established in the frequency band ∼ [10, 1000]Hz
using ground-based interferometric detectors. Starting with the discovery in 2015 of GW150914
[1], a binary black hole (BBH) merger signal, by the twin LIGO detectors, the number of confirmed
GW signals has grown to more than 90 over four observing runs of the LIGO and Virgo detectors.
While the majority of signals are from BBH mergers, there is also a double-neutron star and two
neutron star-black hole signals [2] in the haul so far.

The ∼ [10−4, 1] Hz band is the target for the space-borne detectors like LISA (Laser Interferome-
ter Space Antenna) [3], Taiji[8] and TianQin[7], all scheduled for launch in the 2030s. Different from
ground-based detectors, target signals in space-borne ones are continuous GW signals, mainly emit-
ted by inspiral GW sources. With different components in the inspiral systems, the GW sources can
be categorized into extreme-mass ratio inspiral(EMRI), massive black hole binary(MBHB), binary
black hole(BBH), and compact galactic binaries (GB). Besides, there are stochastic gravitational
wave background(SGWB) originating from both cosmological phases and astrophysical sources.

The galactic compact binaries are the simplest signals in the LISA band, from now on we
simply call frequency bands ∼ [10−4, 1] Hz LISA band. That’s because the components of these
systems are stellar-mass compact objects like Neutron stars and white dwarfs, which is easy to
make approximations for the waveform. But the systems are numerous, around 30 million systems
are predicted by the current astrophysical model.

To provide a benchmark for the development and comparison of data analysis methods, the
LISA community has organized several mock LISA data challenges (MLDCs). The most recent in
this series are the LISA data challenges (LDCs) [4]. LDC1-4 provides single realizations of TDI
combinations, containing Gaussian stationary instrumental noise added to the GW signals from
30× 106 GBs. A catalog of the parameters of the GBs is also provided, allowing the performance
of a multisource resolution method to be quantified rigorously.

As in the earlier paper [10], referred to as P1 from here on, we impose an algorithm for GB
resolution problem named GBSIEVER (Galactic Binary Separation by Iterative Extraction and Val-
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idation using Extended Range). It is convenient to define the following types of GB sources when
discussing our results. (i) True: sources in the LDC1-4 catalog. (ii) Reported: the final list of
estimated sources returned by GBSIEVER. (iii) Identified: The initial list of sources produced by
the single source search step in GBSIEVER before various cuts are imposed to construct the set of
reported sources. (iv) Confirmed: The reported sources that match true sources as determined by
a prescribed metric for association. The fraction of confirmed sources in the set of reported ones
is called the detection rate.

2 Data description

Time Delay Interferometry (TDI) [9] is a technique that will be employed in space-borne gravita-
tional wave observatories to minimize the impact of noise in laser measurements. In the LISA case,
involves combining data from different times and positions of spacecraft to effectively compress noise
that is not related to the GW signal. Many combinations of TDI are proposed in order to cancel
different noises, like Michelson, Sagnac, Relay, etc. We use the so-called A and E combinations in
the Michelson combination, which have mutually independent instrumental noise, corresponding
to the first generation of TDIs used in LDC1. (The T combination is dropped because the GW
signal in it is highly attenuated.)

For a GW signal, a theoretical waveform is needed before we proceed to TDI combination of
the signal. We start with the two polarizations in the transverse traceless (TT) gauge of a plane
GW incident at the Solar System barycenter (SSB) origin. For a compact galactic binary, the
polarizations are well-modeled in the SSB frame as linear chirps,

h+(t) = A
(
1 + cos2 ι

)
cosΦ(t) , (1)

h×(t) = −2A cos ι sinΦ(t) , (2)

Φ(t) = ϕ0 + 2πft+ πḟt2 , (3)

where A is the amplitude of the wave, ι is the inclination angle between the GB orbital angular
momentum and the line of sight from the SSB origin to the GB, ϕ0 is the initial phase, f is the
frequency at the start of observations, and ḟ is the secular frequency drift.

Then we need to project the GW waveform on the constellation arms, take the example of link
between spacecraft 1 and spacecraft 2 n⃗12:

H12(t) = h+(t)× ξ+(û, v̂, n̂12) + h×(t)× ξ×(û, v̂, n̂12), (4)

where ξ× and ξ+ are the antenna pattern functions given by

ξ+(û, v̂, n̂12) = (û · n̂12)
2 − (v̂ · n̂12)

2 , (5)

ξ×(û, v̂, n̂12) = 2(û · n̂12)(v̂ · n̂12). (6)

After appropriate approximations, the relative frequency shift yslr12 is

y12(t1) ≈
1

2
(
1− k̂ · n̂12(t1)

) [H12

(
t1 −

L12(t1)

c
− k̂ · x2(t1)

c

)
−H12

(
t1 −

k̂ · x1(t1)

c

)]
, (7)

Then we can get to the first generation TDI X channel data sX1 by multiplying time delay
operators Dijx(t) = x(t− Lij(t)) to the relative frequency shift like:

sX1 = y13 +D13y31 +D131y12 +D1312y21 − [y12 +D12y21 +D121y13 +D1213y31] , (8)



Modelling for Engineering & Human Behaviour 2024

then Y and Z channel data can be obtained by permute the subscript for the spacecraft.
The TDI time series yID for combination channel I is given by

yI =

Ns∑
k=1

sI(θk) + nI , (9)

where x ∈ RN denotes a row vector, sID(θ) denotes a single GB signal corresponding to source
parameters θ, nID is a realization of the instrumental noise, and Ns is the number of GBs, in LDC1-
4 the number here is 29857650. For a GB, θ consists of {A, ϕ0, ι, ψ, λ, β, f, ḟ}, where A, ϕ0, ι, f ,
and ḟ were defined following Eq. 1 to Eq. 3), ψ is the polarization angle defining the orientation
of the binary orbit projected on the sky, and the longitude and the latitude of the source in the
SSB frame are denoted by λ and β, respectively. In the rest of the paper, θ will serve as a stand in
for a GB source itself where convenient. Following LDC1-4 we set the sampling frequency for the
uniformly sampled time series yID, for all I and D, to be fs = 1/15 Hz, and the number of samples
to N = 4194304 corresponding to an observation period Tobs ≈ 2 yr.

3 GBSIEVER

GBSIEVER utilizes an iterative process where the parameters for a single source are determined at
a time, and the identified signal is then removed from the data. During the parameter estimation
phase, maximum likelihood estimation (MLE) is employed. Here, the log-likelihood function is for-
mulated based on the premise that the data comprises a single source superimposed on Gaussian,
stationary noise. The maximization of the log-likelihood in the case of a GB can be carried out ana-
lytically over a subset of the parameters, leaving behind a function, commonly called the F-statistic
in the GW literature, which is numerically maximized. In GBSIEVER, the latter maximization is
carried out using particle swarm optimization (PSO)[6].

The principal algorithmic components of GBSIEVER and their corresponding settings are re-
viewed in this section. The description is self-contained but brief since further details are available
in P1. We do not provide an extensive review of PSO here, which is used for the global optimization
task in Eq. 15, since it is a widely known algorithm.

3.1 Single sources estimation

In the estimation of compact GB signals, F-statistic is a commonly used simplification, we can
write GW signal as

s̄I(θ) = āXI(κ) (10)

where ā = (a1, a2, a3, a4) ∈ R4 is the extrinsic parameters obtained by reparameterizing A, ϕ0, ψ,
and ι. XI(κ) is template waveforms that depend on the intrinsic parameter set κ = {λ, β, f, ḟ}.

Then the estimator, θ̂M , of the parameters θ of a single sources in iteration M ≥ 1 is given by,

θ̂M = argmin
θ

∑
I∈I

(
∥yIM − sI(θ)∥I

)2
, (11)

where yIM = yIM−1 − sI(θM−1) and yI1 = yI . Here ∥ · ∥ denotes the norm induce by the noise
weighted inner product,

⟨x, z⟩I =
1

Nfs
(x̃./S

I
)z̃†, (12)

where fs the sampling frequency, x̃T = Fx̄T is the discrete Fourier transform of time domain data
x.
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Then we define two quantities to get F-statistic,

W(i, j) =
∑
I∈I

WI(i, j) =
∑
I∈I

⟨XT
(i), X(j)⟩I ,U(i) =

∑
I∈I

UI(i) =
∑
I∈I

⟨yT , X(i)⟩I , (13)

then the estimator of ā in Eq.10 analytically becomes

âT = W−1U (14)

and the MLE estimator of κ is given using F-statistic as

κ̂ = argmax
κ

F(κ) = argmax
κ

UTW−1U (15)

To represent the signal strength with respect to the instrumental noise, we use the signal-to-
noise ratio defined below.

SNR2 =
∑
I∈I

(
∥sI(θ)∥I

)2
, (16)

In the postprocessing of output of the multisource resolution, a metric is required to quantify the
degree of association between a given pair of sources. We choose to use the correlation coefficient,
R(θ, θ′), between the TDI signals corresponding to a given pair of sources as

R(θ, θ′) =

∑
I∈I⟨sI(θ), sI(θ′)⟩I

[⟨sI(θ), sI(θ)⟩I⟨sI(θ′), sI(θ′)⟩I ]1/2
(17)

3.2 Narrow frequency band search and edge effects

Single source searches in GBSIEVER are conducted simultaneously across narrow frequency bands,
each with a width of 0.02 mHz. However, only sources detected within the central 0.01 mHz,
we called the acceptance zone, are accepted into the set of identified sources. This limitation is
implemented to prevent the high incidence of false candidates near the band edges, which can
occur when the power of strong sources spreads across the search bands. The boundaries for each
frequency band are defined by applying a Tukey window to the DFT of a TDI time series. The
central flat portion of this window is slightly broader, at 0.015 mHz, than the acceptance zone.
Sources that are excluded in one search band are not lost; they are captured in adjacent bands
because the bands overlap, ensuring that the acceptance zones are contiguous.

3.3 Undersampling

After the application of the Tukey window to a specific search band, an inverse DFT is used to revert
the bandpassed TDI data back to the time domain. The next critical step involves undersampling[5]
of the time series. This technique significantly reduces the number of samples while retaining all
the necessary information. Undersampling makes use of the aliasing error, which occurs when
sampling below the Nyquist rate, to transfer the informational content of bandpassed data to lower
frequencies. Given that the F-statistic in each search band is calculated assuming white noise, this
approach allows for the inner product in Eq.12 to be efficiently computed in the time domain.

3.4 Cross-validation

This is another key feature of GBSIEVER, the entire single sources search is rerun on the same data
with all settings hold the same but the search range used for the frequency derivative is extended
10 times. Then we get two sets of identified sources from these two runs. We call the narrow
frequency derivative search the primary search and the wider one secondary search. Finally, for
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each identified source θ̂1,i in the primary search we compute correlation with respect to the sources

in adjacent frequency region in the secondary search. We categorize the identified source θ̂1,i into

reported source only if Ree(θ̂1,i) is higher than a preset threshold. This cross-validation is extremely
effective in eliminating spurious identified sources. The preset Ree threshold is related to frequency
and SNR of identified source as following,

Ree =

{
0.9, ν ∈ [0, 3]mHz,SNR ≤ 25
0.5, ν ∈ [0, 3]mHz,SNR > 25

Ree =

{
0.9, ν ∈ [3, 4]mHz,SNR ≤ 20
0.5, ν ∈ [3, 4]mHz,SNR > 20

(18)

For f > 4mHz, cross-validation is not required, that’s because the number of spurious sources
decreases rapidly.

4 results

Until now, we have successfully implemented GBSIEVER in various scenarios, including the single
LISA detector, the combined LISA-Taiji network detector, and configurations that incorporate
astrophysical priors. In each of these applications, the algorithm has consistently performed at the
forefront of the field, demonstrating state-of-the-art effectiveness and reliability.

4.1 Single LISA detector

In table1 we show the number of identified, reported, and confirmed sources in each block which is
divided according to SNR and frequency of the sources. And also the detection rate in each block
and overall information. It can be seen in the low-SNR low-frequency region(block 1 and block 3),
due to not only the high overlapping between the signals but also the faintness of the signals, the
detection rate is low. The other results like subtraction residual and parameter estimation will be
shown when comparing the single LISA detector results with improved settings.

ν = [0, 3] ν = [3, 4] ν = [4, 15]

SNR [0, 25] SNR [25,∞] SNR [0, 20] SNR [20,∞] SNR [10,∞]

Ree 0.9 0.5 0.9 0.5 −1

Identified 23231 2106 3696 1526 4279

Reported 2767 2073 1622 1510 4279

Confirmed 1760 1892 1303 1394 4039

Detection rate 63.61% 91.27% 80.33% 92.32% 94.39%

Table 1: Performance of GBSIEVER for the single-detector LDC1-4 data. The total number of
reported sources is 12251, and the total number of confirmed sources is 10388, and the total
detection rate is 84.79%.

4.2 LISA-Taiji network

We extended our original GBSIEVER from the single LISA detector to network detectors by extending
the definition of F-statistic, SNR, and also generated the TDI data of 30 million GBs for the Taiji
detector[11]. By extending the single LISA detector to the LISA-Taiji network detector case, we
get the total number of confirmed GBs increase from 10388 to 18151, a significant improvement of
74.73%.
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ν = [0, 3] ν = [3, 4] ν = [4, 15]

SNR [0, 25] SNR [25,∞] SNR [0, 20] SNR [20,∞] SNR [10,∞]

Ree 0.9 0.5 0.9 0.5 −1

Identified 33144 3941 3461 2528 4687

Reported 8420 3920 2440 2526 4687

Confirmed 5561 3605 1876 2406 4536

Detection rate 66.05% 91.96% 83.73% 95.25% 96.78%

Table 2: Performance of GBSIEVER for the LISA-Taiji network using LDC1-4 and Taiji-mod data.
The total number of reported sources is 21993 and the total number of confirmed sources is 18151,
and the total detection rate is 82.53%.

4.3 astrophysical prior

In the LDCs GB catalog, there are two kinds of sources, ones with mass transfer between two
components of the system called semi-detached, and another set of sources without mass transfer
called detached. These two kinds of sources are both well-constrained in frequency derivative when
we have clear information on frequency.

We here use a Tukey window w(ḟ) in frequency derivative with window position determined by
frequency, then the F-statistic can be modified as

Fprior = F(κ) ∗ w(ḟ) (19)

we can see the effect of this Tukey window on the single parameter fitness in Fig.1, where the big
blue dot shows the location and fitness value of the original fitness function and the yellow star
shows the true location and fitness value, then the red diamond is the location of max windowed
fitness.
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Figure 1: Illustration for the effect of frequency derivative prior on fitness function when fixing
other parameters but the derivative. Here’s the case with (f ∈ [2.30, 2.32]mHz). The data is a
superposition of instrumental noise, all weaker signals, and the signal itself.

In the results of the test on the single LISA case with astrophysical prior implemented, the
number of total confirmed increased from 10388 to 10596 with an improvement in detection rate
from 84.79% to 87.46%, if we lose the Ree threshold to get the same detection rate( 84.79%),
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Figure 2: Intrinsic parameters estimation errors. The blue histogram is the estimation error of a
single LISA detector using GBSIEVER and the red histogram is the one from a LISA-Taiji network
detector using GBSIEVER with prior on frequency derivative

we can get 767 more confirmed sources. As for the LISA-Taiji network case with astrophysical
prior implemented, the number of total confirmed increased from 18151 to 19142 with a great
improvement in detection rate from 82.53% to 89.04%, if we lose the Ree threshold to get the same
detection rate( 82.53%), we can get 2703 more confirmed sources. The improvement is much more
significant in network detection than in single-detector experiments.

ν = [0, 3] ν = [3, 4] ν = [4, 15]
SNR ∈ [0, 25] SNR ∈ [25,∞] SNR ∈ [0, 20] SNR ∈ [20,∞] SNR ∈ [10,∞]

Ree 0.9 0.5 0.9 0.5 −1
Identified 25048 3919 3448 2527 4741
Reported 7914 3898 2423 2525 4738

Detection rate 79.04% 95.07% 87.66% 96.36% 97.59%

Table 3: Performance of GBSIEVER for the LISA-Taiji network using LDC1-4 and Taiji-mod data.
The total number of reported sources is 21492, and the total number of confirmed sources is 19142,
and the total detection rate is 89.04%.

Since our window fitness brings constraint on the frequency derivative, the improvement of
parameter estimation performance is mainly in frequency derivative as expected, with a slight
improvement in f as well. For common confirmed sources from GBSIEVER and GBSIEVER with
prior on frequency derivative, we can compare the error of the estimated parameter. In Fig.2 we
show the improvement in parameter estimation of 4 intrinsic parameters.

5 Conclusions

The algorithm GBSIEVER is one of the state-of-the-art data analysis pipelines for space-borne GW
detectors aiming galactic binary. We successfully implement the pipeline with single LISA detector
and LISA-Taiji network detector, also including the astrophysical prior for parameter estimation.
The results of the analysis are all at the leading level in the context of multisource GB resolution
problem.
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