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1 Introduction

This study investigates the stability role of self-accelerating parameters in vectorial iterative meth-
ods without memory, building on the prior work by Singh, Sharma, and Kumar [1], who introduced
an innovative biparametric scheme. Our research focuses on evaluating two subfamilies derived from
the original model: the first with p1 = 1 and arbitrary p2, and the second with arbitrary p1 and
p2 = 1, to compare their behavior and effectiveness in solving nonlinear systems.

A detailed stability analysis is performed through dynamic and bifurcation planes. This analysis
involves observing how the parameters p1 and p2 influence the method’s stability and convergence
speed, using dynamical graphs to illustrate similarities and differences between those subfamilies.
These graphs help identify sets of parameter values where the methods are more stable and the
conditions under which chaotic behaviors or strange fixed points can emerge.

Moreover, the mathematical properties of fixed points and periodic orbits within this context are
described, including their classification and stability. Attractors and repellers are studied, and how
parameter selection affects the presence and type of these fixed points, offering a deeper insight
into the real multidimensional dynamics of these systems.

Numerical testing is another crucial component of our study. It is implemented on various nonlin-
ear systems, showing that modifications to the iterative schemes not only preserve computational
efficiency but also enhance convergence. These results are verified against the expected theoret-
ical values, demonstrating the validity and robustness of the proposed schemes under different
parameter settings.
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2 Methods

Singh and Sharma et. al in [1] recently presented a interesting biparametric family with a novel

approach by introducing the factor F (w(k))TF (w(k))

F (x(k))TF (x(k))
that can be viewed as F (w(k))TF (w(k)) =∥∥F (w(k))

∥∥2, and F (x(k))TF (x(k)) =
∥∥F (x(k))

∥∥2, respectively.
The proposed scheme had the following iterative expression:
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where the parameters p1 and p2 are real numbers. The method consists of using the result of
multiplying a row vector function by a column vector function, which results in a scalar function.
This approach allows a significant reduction in the work effort, leading to a considerable reduction
in the costs associated with computational processing.

Specifically, we work with the following schemes:

w(k) = x(k) − F ′
(
x(k)

)−1
F
(
x(k)

)
,

x(k+1) = w(k) −

(
1 + p2

F
(
w(k)

)T
F
(
w(k)

)
F
(
x(k)

)T
F
(
x(k)

) )F ′
(
w(k)

)−1
F
(
w(k)

)
. (3)

and

w(k) = x(k) − F ′
(
x(k)

)−1
F
(
x(k)

)
,

x(k+1) = w(k) −

(
p1 +

F
(
w(k)

)T
F
(
w(k)

)
F
(
x(k)

)T
F
(
x(k)

) )F ′
(
w(k)

)−1
F
(
w(k)

)
.

(4)

Where 3 is the scheme obtained with p1 = 1 and arbitrary p2 which will have a convergence
order of 4 for the members of this subfamily except for p2 = 1 which would be 5, while 4 is the
subfamily obtained by arbitrary p1 and p2 = 1 whose convergence order for the members is 2 except
for p1 = 1 which is 5.

3 Results

The numerical results obtained were performed with the Matlab2022b version with 2000-unit pre-
cision arithmetics. Now, we describe some important data that appear in the tables:

• k= Number of iterations performed (”-” appears if there is no convergence or it exceeds the
maximum number of iterations allowed).

• x̄= which solution was reached by the iterative method with the given initial estimation.

• ρ (approximate computational order convergence) defined by Cordero and Torregrosa in [5]

ρ =
ln
∥x(k+1)−x(k)∥
∥x(k)−x(k−1)∥

ln
∥x(k)−x(k−1)∥
∥x(k−1)−x(k−2)∥

, for each k = 2, 3, . . .,
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(if the value of ρ for the last iterations is not stable, then ”-” appears in the table).

• ϵaprox= The error obtained by taking the norm of the solution in one iteration and its prior,∥∥x(k+1) − x(k)
∥∥,for the table, only the one obtained in the last two iterations will be placed.

• ϵf= Norm of the function evaluated in the following estimation,
∥∥F (xk+1

)∥∥ (if the error
estimates are very far from zero or we get NAN, infinity, then we will place ”-” )

For the stopping criterion, the first of the three items to be fulfilled first was taken into account

Example 1 The first test is the following system,{
ex1ex2 + x1cos(x2) = 0,

x1 + x2 − 1 = 0.
(5)

The exact solution of system (5) is:

x̄1 ≈ (−185.93938, 186.93938) ; x̄2 ≈ (−50.78272, 51.78272) ; x̄3 ≈ (24.45053, −23.45053)
x̄4 ≈ (143.92357 − 142.92357) ; x̄5 ≈ (165.94999, 164.94999),
and we use as initial estimation x(0) = (−2, 3).

Example 2 The second example is a system of equations of size n = 20, whose expression is:

arctan (xi) + 1− 2

[(
20∑
k=1

x2k

)
− x2i

]
= 0, i = 1, 2, . . . 20. (6)

The solution of (6) is x̄1 ≈ (0.175768, . . . , 0.175768)T , x̄2 ≈ (−0.1496, . . . ,−0.1496)T

and we use as initial estimation x(0) = (1, 1, . . . , 1)T .

Table 1: Numerical results for Example 1.

Iterative methods class (1) k ρ ϵaprox ϵf x̄

p2 = −7 6 4 5.473× 10−174 9.164× 10−696 x̄2
p2 = 1 6 5 4.921× 10−470 1.834× 10−2006 x̄3

p2 = −52 16 4 2.477× 10−300 6.687× 10−1204 x̄1
p2 = 15.983 6 4 6.334× 10−263 1.015× 10−1054 x̄5
p2 = 15.20 7 4 8.199× 10−216 1.017× 10−863 x̄4

Table 2: Numerical results for Example 2.

Iterative methods class (2) k ρ ϵaprox ϵf x̄

p1 = −1 14 2 7.906× 10−159 1.067× 10−315 x̄1
p1 = 1 6 5 4.326× 10−319 1.69× 10−1591 x̄1
p1 = 2 15 2 2.154× 10−161 3.926× 10−321 x̄2

p1 = −25 - - - - -
p1 = 8 - - - - -

On the other hand, the bifurcation planes show how the behavior of a dynamic system changes
as the parameters are varied. This allows to identify regions of stability and chaos, or transitions
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between different types of behavior, such as convergence to a solution or divergence while dynamical
diagrams help to analyze the stability of solutions found by iterative methods. For example, a
diagram can show whether iterations stabilize at a fixed point, converge to a limit cycle, or exhibit
chaotic behavior, depending on the initial conditions and parameters of the method.

Some bifurcation and dynamical planes are shown below to demonstrate the behavior of some
members of the subfamilies.

Figure 1: Feigenbaum diagrams of SS(x, p2) for p2 > 0.

In the dynamic plane presented in Figure 3, we observe a complex pattern of colors representing
basins of attraction towards different fixed points in the context of an iterative system. Each distinct
color, except for black, indicates a region where initial conditions converge towards a specific fixed
point. This representation is a key visual tool for understanding how different initial conditions
affect the behavior of the system under study.

The color black on the plane represents areas where initial conditions lead to divergence or
extremely slow convergence towards a fixed point. This implies that, from these initial conditions,
the iterative method does not stabilize quickly or may diverge.

On the other hand, the yellow lines and dots represent the orbit described by a specific initial
estimate. This color indicates the presence of a periodic orbit, where the initial condition does not
converge to a fixed point but enters a repetitive cycle. This type of behavior is crucial for dynamic
analysis, as periodic orbits can indicate more complex behaviors, like chaos, under slightly different
parameter settings.

The interpretation of these colors and shapes on the plane allows researchers and analysts
to determine the effectiveness of different iterative methods and adjust parameters to achieve the
desired convergence. Additionally, it facilitates the identification of problematic regions that require
special attention, either in terms of numerical stability or in the search for more precise solutions.
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Figure 2: Periodic orbits for p2 represented in dynamical planes

4 Conclusions

This comprehensive analysis proves that the proper choice of parameters is crucial for optimiz-
ing the stability and efficacy of memoryless iterative methods. Furthermore, it provides a solid
foundation for future research that may explore more complex configurations or different types of
nonlinear systems of equations.

In conclusion, this work not only highlights the importance of careful parameter selection in iter-
ative methods but also establishes a clear methodology for assessing the stability and dynamics
of these schemes, making a significant contribution to the existing literature and offering new
perspectives for the efficient resolution of nonlinear problems in mathematical practice.
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