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1 Introduction

Differential equations serve as an essential mathematical tool for modeling a wide range of dynami-
cal systems, offering significant insights into their progression and underlying mechanics. Our focus
lies on equations that model systems related to growth patterns, particularly those whose solutions
generate sigmoidal-type curves. The study of these patterns is important in several fields, including
population biology (understanding the growth of populations organisms), epidemiology (modeling
the spread of diseases), economics and business (analyzing market penetration and adoption rates
of new products), technology and innovation (studying the life cycle of technological innovations),
ecology (understanding the carrying capacity of ecosystems), sociology (analyzing the spread of
information, behaviors or cultural phenomena), etc. The aforementioned curve followed by these
applications encompasses three phases: a lag phase marked by slow or negligible growth, an expo-
nential growth phase and a plateau phase. In the latter, growth stabilizes when the system reaches
its maximum potential under existing conditions.

The pioneer in this field is Verhulst, who proposed the logistic equation that responds to the
characteristics just described. His model describes how populations grow when limited resources
are taken into account. Due to some limitations of his model, other authors such as Richards,
von-Bertalanffy, Gompertz or Blumberg have proposed extensions and modifications of the model
to overcome them [1]. These offer greater flexibility, enabling them to more precisely fit a variety
of real-world growth patterns.

In this work we will focus on an extension of the logistic equation, called by Turner the hyper-
logistic equation [2]. The particularity of this equation, with respect to the Verhulst model, lies
in the introduction of the additional parameter, p. This makes it more flexible and adaptable to
various growth scenarios. It is formulated by the following differential equation{

n′(t) = r
Kn(t)1−p(K − n(t))1+p,

n(t0) = n0.
(1)

The parameters in the equation (1) are defined as follows: r > 0 is the growth rate constant,
K > 0 is the carrying capacity, and r

K forms the proportionality constant. The shape parameter is
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within the range 0 < p < 1. Additionally, the function n(t) represents the quantity of interest at
time t, with n0 ≥ 0 denoting the initial quantity at initial time t0 ≥ 0, and n′(t) representing the
rate of change of n with respect to t.

At this point, it is important to note that when this model is applied to the real world, un-
certainty comes into play. This can come from several sources, such as the intrinsic randomness
of the system itself and its fluctuations from the environment, measurement errors such as in the
collection of data on the quantity of interest, or factors that influence the different phases of the
sigmoidal curve. To address this problem, one way would be to introduce uncertainty directly into
the model through the inputs, considering them as random variables. This fact gives rise, therefore,
to the following random differential equation, which would be the randomization of (1){

n′(t, ω) = r(ω)
K(ω)n(t, ω)

1−p(ω)(K(ω)− n(t, ω))1+p(ω),

n(t0) = n0(ω),
(2)

where r(ω), K(ω), p(ω) and n0(ω) are absolutely continuous random variables defined on a com-
mon complete probability space (Ω, FΩ,P), with a known joint probability density function (PDF)
denoted as f0(r,K, p, n0). Thus, the uncertainty and variability of real-world conditions are in-
corporated into the model, making the equation (2) a more realistic representation of the growth
scenario compared to the deterministic (1). Hence, its solution now represents a stochastic process
of the following form

n(t, ω) = K(ω)− K(ω)

1 +

(
p(ω)r(ω)(t− t0) +

(
K(ω)
n0(ω)

− 1
)−p(ω)

) 1
p(ω)

. (3)

One of the objectives of this study is to conduct a thorough probabilistic analysis of the solution
(3) for each time. This will involve determining the first probability density function (1-PDF) and
analyzing its main statistical characteristics such as mean, variance and probabilistic intervals.

While the theoretical results to be obtained can be applied to various growth processes, such
as the growth of multicellular tumor spheroids [3, 4], our other objective in this study is different.
We intend to apply our model to a completely different context: cumulative data (reflect the
accumulation of events or quantities over time). Cumulative data usually present a sigmoidal
shape, similar to the solutions of our model. By fitting our model to these data, we aim to assess
its ability to capture the underlying trend, demonstrating its wider applicability beyond traditional
growth processes.

2 Methods

In order to address my first objective, which is to determine the 1-PDF, we will employ the
Random Variable Transformation (RVT) technique. The theorem on which this technique is based
is as follows, as can be found in [5].

Theorem 1 Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be n-dimensional random vectors. Sup-
pose r : Rn → Rn is a one-to-one transformation of X into Y, such that Y = r(X). Assume that r
is continuous in X and has continuous partial derivatives with respect to X. If fX(x) denotes the
known joint PDF of vector X, and s = r−1 represents the inverse mapping of r, the joint PDF of
vector Y is given by

fY(y) = fX (s(y)) |Jn| ,
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where |Jn| is the Jacobian, defined as

Jn = det


∂s1(y)

∂Y1
· · · ∂sn(y)

∂Y1
...

. . .
...

∂s1(y)

∂Yn
· · · ∂sn(y)

∂Yn

 .

Upon setting all the identifications of the Theorem 1, we obtain the following analytical expres-
sion for the 1-PDF of the solution (3).

f1(n, t) =

∫ ∞

n0

∫ 1

0

∫ K

0
f0


(
K
n − 1

)−p −
(

K
n0

− 1
)−p

p(t− t0)
,K, p, n0

 K

n2(t− t0)

(
K

n
− 1

)−p−1

dn0 dpdK.

(4)
By definition, the carrying capacity K must be greater than the initial quantity n0, K > n0 ≥ 0,
since K is the upper limit that the quantity of interest can reach under given conditions.

To apply the theoretical results in practice, it is essential to assign an appropriate probability
distribution to the joint PDF f0 in order to accurately capture the uncertainty in the data. Although
there are several methods to achieve this, in this paper we have chosen to use a Bayesian approach
for this purpose. The PDF we are interested in will be obtained using Bayes’ theorem [6], where
f0 represents the posterior distribution p(θ|X)

p(θ|X) ∝ p(X|θ)p(θ), (5)

where θ represents the parameter vector (r,K, p, n0) with the associated prior PDF p(θ), and X
represents the random vector of the observed data with the likelihood function p(X|θ).

In practice, the posterior distribution is estimated using the Gibbs sampling algorithm, which
is a method within the Monte Carlo Markov Chains (MCMC) framework (see [7]). Based on
the knowledge obtained from the available literature on our model, we have chosen a Normal
distribution for the likelihood function, and for the prior distributions of the model parameters, we
have opted for non-informative prior distributions, namely Uniform distributions.

Once the posterior distribution has been estimated, subsequent convergence analyses are per-
formed to ensure that the Markov chain has sufficiently explored the parameter space and that the
samples obtained are representative of the true posterior distribution. With the joint distribution
f0 now established, we can determine the 1-PDF and, subsequently, its statistical characteristics,
including the mean, standard deviation and 95% probabilistic intervals (PI’s)

E[n(t, ω)] =
∫ ∞

−∞
nf1(n, t) dn, σn(t) =

√∫ ∞

−∞
(n− E[n(t, ω)])2f1(n, t) dn,

P({ω ∈ Ω / n(t̂, ω) ∈ [n1(t̂), n2(t̂)]}) ⇒
∫ n1(t̂)

0
f1(n, t̂) dn =

0.05

2
=

∫ K

n2(t̂)
f1(n, t̂) dn,

(6)

where t̂ ≥ 0 represents an arbitrary fixed time.

Finally, since our intention is to apply the model to a completely different case of a typical
growth process, we use the posterior predictive distribution for new data X̃new given observed
data X, i.e. p(X̃new|X), to assess whether the model plausibly explains the observed data, as
follows
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p(X̃new|X) =

∫
p(X̃new|θ)p(θ|X)dθ, (7)

where p(X̃new|θ) is the likelihood of the new data given the parameters, and p(θ|X) is the posterior
distribution of the parameters given the observed data. The integral is taken over the entire
parameter space.

3 Results

In this part, we apply the theoretical results from the previous section to real-world data. Specifi-
cally, we analyze the cumulative data on the number of annual publications of Kucharavy’s and De
Guio’s work [8]. This dataset includes the total number of publications each year during the period
1996 − 2011 in the TRIZ journal, TRIZCON conferences, and ETRIA conferences. The data are
summarized in Table 1.

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Publications 5 37 107 201 298 439 617 773 936 1121 1316 1451 1563 1629 1722 1788

Table 1: Cumulative number of TRIZ publications per year from 1996 to 2011.

After obtaining the joint PDF f0 using the Gibbs sampling algorithm within the Bayesian
framework described in equation (5), we can determine the 1-PDF defined in equation (4), the
plot of which is shown in the left panel of Figure 1. It is evident that for each time the PDF is
systematically centered around the recorded publication number, resembling the shape of a Normal
distribution.

This behavior is most clearly illustrated in the right panel of Figure 1, where the observed data
are juxtaposed to the mean of the 1-PDF, representing the probabilistic fit. The evolution of this
fit over time shows a stabilization pattern characteristic of an S-shape, while the 95% probabilistic
intervals effectively capture the uncertainties in the data.

Observed data

E[n(t,ω)]

95%PI

1998 2000 2002 2004 2006 2008 2010
Year

500

1000

1500

Number of publications

Figure 1: Left side: 1-PDF representation of the stochastic process described in (3) of the random
differential equation (2) at different time instants. Right side: Visualization of the probabilistic
fit to the observed data (dots), including the expectation (solid line) and 95% PI’s (dashed lines)
of the 1-PDF described in (4) associated of the solution presented in (3), utilizing the equations
defined in (6).

Finally, we generated an empirical approximation of the posterior predictive distribution defined
in (7) by simulating new data points for each set of posterior parameter samples. The result is
shown in Figure 2, where it is indicated that the model successfully captures both the underlying
trend and the variability of the data.
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Figure 2: Representation of the posterior predictive distribution, where blue markers denote ob-
served data points and dashed lines depict simulated data generated from model (3) using posterior
parameter samples. The red dashed line represents the mean of the simulated data, summarizing
the central tendency of the predictions.

4 Conclusions

We have studied an extension of the classical growth model from a probabilistic perspective, treating
both the initial condition and all its parameters as continuous random variables. Taking advantage
of the nature of the solution, we have employed the RVT technique to determine the 1-PDF. To
calculate it in practice, a technique within the Bayesian framework has been applied to properly
assign a joint distribution for the vector of model parameters.

These theoretical findings were subsequently applied to real-world data, specifically cumulative
data exhibiting a sigmoidal curve pattern. These illustrates a completely different case of a typical
growth process, where such a model is normally applied, making them an ideal candidate for testing
the flexibility and robustness of the proposed model through empirical validation.
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