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1 Introduction 

Throughout the years, studying the effects of perturbations in nuclear reactors 
performance has become a crucial issue to assure the safety of these reactors and consequently, 
guarantee their long-term operations. With the help of in-core instrumentation, neutron flux 
fluctuations, called neutron noise, can be analyzed, and provide information of the performance 
of the reactor core. By studying the neutron noise, we can localize and detect anomalies or 
perturbations in the nuclear reactor using deep learning techniques. 

A clear example of the successful use of deep learning is presented by Tasakos et al. [1], 
whose work studies the use of Convolutional Neural Networks for classifying and locating 
perturbations in the core of a 3-loop Swiss pre-KONVOI pressurized water reactor (PWR), 
using SIMULATE-3K for creating several types of perturbations. 

He-Lin Gong et al. [2] identify the location of detectors as an important source of 
improvement in core monitoring and CNN developing. They propose a Voronoi tessellation to 
obtain a discrete grid-structure representation of the distribution of in-core instrumentation and 
feed with it a CNN model. What is suggested in this work allows to study the optimal location 
of the sensors in order to increase the detection accuracy. 

This work contributes developing three different CNN models to study the perturbations 
and their locations, using synthetic data generated from the BIBLIS 2D benchmark but adding 
neutron noise expressed as variations in cross-sections values. To present our work the 
document is distributed as follows. First, the methodology used for the three training models is 
explained, that includes the analysis of neutron noise in the frequency domain and the 
description of the CNNs structures to identify and locate the perturbations. Then, to verify the 
methodology, the results of accuracy for every model and the distribution of the detectors are 
presented. This section leads finally to several conclusions that are summarized in the last 
section. 

Study of Convolutional Neural Networks (CNNs) for 
Classifying and Locating Neutron Noise Perturbations 



2 Methodologies 

2.1 Frequency domain first order neutron noise equation 

Among the different techniques used to solve the diffusion equation, the frequency-
domain solution has proven to be successful [3]. The methodology used to obtain the neutron 
noise distribution is based on the method implemented in the finite element method code 
FEMFFUSION [4]. Developed by UPV, this code has introduced a tool, FEMFFUSION-FD, to 
solve the 2-energy groups diffusion approximation in the frequency-domain, using the first-
order approximation of the neutron noise. 

Taking the first-order neutron noise as a split of the time dependent term 𝑈𝑈(𝑟𝑟, 𝑡𝑡) into its 
mean steady state value 𝑈𝑈0(𝑟𝑟) and its fluctuation around the mean value 𝛿𝛿𝑈𝑈(𝑟𝑟, 𝑡𝑡), it can be 
expressed as: 

𝑈𝑈(𝑟𝑟, 𝑡𝑡) = 𝑈𝑈0(𝑟𝑟) + 𝛿𝛿𝑈𝑈(𝑟𝑟, 𝑡𝑡). (1) 

Assuming the fluctuations of the time dependent term are small compared to the mean 
values, the second-order terms can be neglected as well as any fluctuation of the diffusion 
coefficients �𝛿𝛿𝛿𝛿𝑔𝑔 = 0�. The validity of such approximations is already demonstrated for light 
water reactor in several studies [5]. Then, the Fourier transform can be applied to the neutron 
diffusion equation resulting in: 

−∇��⃗ �𝛿𝛿∇��⃗ 𝛿𝛿𝛿𝛿(𝑟𝑟,𝜔𝜔)� + Σ𝑑𝑑𝑑𝑑𝑑𝑑𝛿𝛿𝛿𝛿(𝑟𝑟,𝜔𝜔) = 𝛿𝛿𝛿𝛿(𝑟𝑟,𝜔𝜔). (2) 

That can be written as [6]: 
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and 
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Which depicts an in-homogeneous equation with complex coefficients that needs to be 
solved first in steady state using the steady state fast flux 𝛿𝛿1 and thermal flux 𝛿𝛿2. Then, the 



spatial discretization used in the frequency domain neutron noise equation has to be applied to 
the static eigenvalue problem in order to obtain logical results. 

Applying the continuous Galerkin finite element discretization [6, 7] to Eq. (2), an 
algebraic linear system of equations is reached with the structure shown in Eq. (6). In it as in 
Eq. (4), 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2 are, respectively, the algebraic fast and thermal neutron noise weight 
vectors, and 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2 the noise source for both energy groups. 
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By only introducing the specific frequencies of the noise source to the frequency-
domain neutron equation, a solution is delivered, since only a linear system of equations in the 
complex domain need to be solved. Unlike in the frequency-domain approximation, the time-
dependent equation approach calculates for each time step, which leads to a great amount of 
linear systems to solve and, consequently, increasing considerably the computational time. To 
solve the complex linear system, FEMFFUSION uses the PETSc library [8] with the GMRES 
solver, giving the complex 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2. 

These results are normally used to express the relative neutron noise |𝛿𝛿𝛿𝛿1|𝑅𝑅𝑅𝑅𝑅𝑅 for the 
fast neutrons and |𝛿𝛿𝛿𝛿2|𝑅𝑅𝑅𝑅𝑅𝑅 for the thermal neutrons, which is an evaluation of the fast and 
thermal neutron noise amplitudes |𝛿𝛿𝛿𝛿1| and |𝛿𝛿𝛿𝛿2|, respectively, through the steady state fast 
and thermal neutron fluxes 𝛿𝛿1 and 𝛿𝛿2: 

|𝛿𝛿𝛿𝛿1|𝑅𝑅𝑅𝑅𝑅𝑅 = |𝛿𝛿𝛿𝛿1|
𝛿𝛿1

, |𝛿𝛿𝛿𝛿2|𝑅𝑅𝑅𝑅𝑅𝑅 = |𝛿𝛿𝛿𝛿2|
𝛿𝛿2

. (7) 

The frequencies introduced to create the noise are chosen according to the typical 
vibration and thermal-hydraulic anomalies frequencies, and are in the range from 0.1 Hz to 10 
Hz, in particular the chosen frequencies were 0.1, 0.5, 1.0, 5.0 and 10 Hz. Each of these 
frequencies are applied to every assembly and, since the anomalies studied are variations in 
absorption (Σ𝑎𝑎) and scattering (Σ𝑠𝑠) cross-sections, a total of 2570 files are generated to train 
the CNN models. However, in-core monitors only detect the thermal relative noise thus, only 
the values of the thermal flux and thermal noise are useful. 

2.2 Convolutional Neural Networks Design 

The preprocessed data with the added neutron noise feeds 3 different CNN models, all of 
them inspired in the VGG16 network [9], a multiclass image classification. In the case of our 
work, the parameters and hyperparameters are updated according to the necessities of our data, 
and the number of hidden layers is selected experimentally to reduce computational time but 
maintaining the capability to extract discriminative features. 

Taking the data and geometry from the BIBLIS 2D benchmark as in Figure 1,  a total of  
257 assemblies distributed in a checkerboard shape are introduced to the models as 2-
dimensional 17x17 meshes so the spatial information is maintained. The effect that the number 
of the active detectors has in the accuracy results is evaluated using 13 different distributions 



of active detectors, introduced to the models as 17x17 matrices. This study also allows to 
determine the minimum number of detectors needed in order to get the optimal model with high 
reliability. 

Figure 1. BIBLIS 2D checkerboard distribution for different 2-group homogenized materials. 

To increase the reliability of the models, Additive White Gaussian Noise (AWGN) is 
added to the data as a tool to introduce the possible inaccuracies in detection that the sensors 
could commit. This technique is also valid to generate more data to the training so the overfitting 
is avoided and is called data augmentation. The process of adding the AWGN starts with 
calculating the power of the original signal 𝑃𝑃𝑠𝑠, using the mean squared value of the signal: 

𝑃𝑃𝑆𝑆 = 1
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∑ �𝛿𝛿𝛿𝛿2(𝑘𝑘)
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being 𝑛𝑛 the number of elements in the matrices. Next, the percentage of the noise level, 𝑙𝑙, is 
added so the noise power 𝑃𝑃𝑑𝑑 is calculated: 

𝑃𝑃𝑑𝑑 =  𝑙𝑙𝑃𝑃𝑠𝑠. (9) 

The white Gaussian noise is generated as a normal distribution 𝜑𝜑 =  𝒩𝒩(0, 1), and 
applied to adjust the noise power to the wanted percentage 𝜑𝜑�: 

𝜑𝜑� = �
𝑃𝑃𝑛𝑛

1
𝑛𝑛
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𝜑𝜑. (10) 

Finally, the noise amplitude is scaled to match the desired noise level, 𝜑𝜑𝑙𝑙 and added to 
the original signal: 

𝜑𝜑𝑙𝑙 =  𝑙𝑙𝜑𝜑�, 𝑠𝑠𝜑𝜑 = 𝛿𝛿𝛿𝛿2(𝑘𝑘)
𝛿𝛿2(𝑘𝑘)

+ 𝜑𝜑𝑙𝑙. (11)



For these trainings the percentages of AWGN introduced are in the range between 5% 
to 25% in increments of 2.5%, meaning that the dataset will be increased 10 times, the original 
values and the 9 from the white noise. 

The CNNs Sequential structures to identify and locate the perturbation are shown in 
Figure 2 and Figure 3, respectively. They show that, after the data is read, several 2D 
convolutional layers with ReLu activation and Batch Normalization (BN) are applied, followed 
by a Max Pooling layer. Finally, two stages of fully connected layers with a drop out are added. 
The last step of a CNN is to transform the shape of the output into a one-dimensional vector to 
classify into the desired number of classes. In Figure 2 the activation used is a sigmoid, which 
is useful when there are only 2 classes, as is our case. Meanwhile, the multiclass classification 
is done with a softmax activation, as can be seen in Figure 3, resulting in a vector of 257 classes 
of neurons. 

Similarly, the third CNN model uses the same layers structure but are applied to a Keras 
Model class instead of a Sequential class, which allows to identify and locate the perturbations 
at the same time instead of individually.    

Figure 2. CNN structure to  identify the type of 
perturbation. 

Figure 3. CNN structure to locate the 
perturbation. 

With respect to the hyperparameters, the values for the learning rate and drop out are 
selected experimentally, and the batch size is maintained in 32. The optimizer used is Adam and 
the loss functions used are binary cross-entropy for type classification and categorical cross-
entropy to locate the perturbations. 

The training is done using the Keras library [10] on a GPU Nvidia A40 and the early 
stopping tool is used to save computational time. 



3 Numerical Results 

Once the trainings are completed, the CNNs perform the validation and test of the trained 
models. The initial data set is split keeping 15% of the data for testing the model and 12% for 
the validation. Then, the remaining 73% of the data is provided for the training. 

The validation is done immediately after the training to evaluate the model and tune the 
hyperparameters, with an unbiased perspective. Similarly, the test uses unseen data to evaluate 
the final model after the validation, returning the accuracy trend values for each epoch and the 
final model accuracy for every configuration of detectors. 

In Table I the accuracy results for the 3 trained CNN models are depicted. It can be seen 
that with 4 active detectors, accuracies of 90% are reached and the 100% accuracy is easily 
achieved in the classification of the type of perturbation. However, getting the 100% accuracy 
in the location training is only feasible for higher numbers of active detectors. These tendencies 
are also seen in the coupled training, where the CNN trains, simultaneously, to identify and 
locate the perturbations. Figure 4 compares visually the exponential behavior of the accuracy 
when the number of active detectors increases. 

Table I.  
CNN accuracy results for each training model and detector distribution. 

Active 
detectors Type of perturbation Location of 

perturbation 
Coupled training 

Type Location 
0 50.01% 0.39% 48.72% 0.28% 
4 98.31% 90.35% 83.58% 91.10% 
8 99.95% 98.52% 100% 97.04% 

16 100% 99.04% 100% 99.69% 
24 100% 99.56% 100% 99.69% 
32 100% 99.69% 100% 99.77% 
46 100% 99.71% 100% 99.79% 
64 100% 99.97% 100% 99.97% 
82 100% 100% 100% 100% 
97 100% 100% 100% 100% 
128 100% 100% 100% 100% 
184 100% 100% 100% 100% 
257 100% 100% 100% 100% 

Notwithstanding, introducing active detectors in every assembly to assure the highest 
accuracy is not realistic nor necessary. The number of active detectors and their distribution has 
to be optimal, using the minimum number of detectors that give a high enough accuracy. In 
general terms, it can be said that the developed models are well-designed and meet the needs 
of the problem in hand, partially thanks to the variability of the data due to the AWGN addition. 
Moreover, the training has been done for a range of specific frequencies, meaning that the 
validity of these CNN training models cannot be assured for other frequencies of neutron noise. 



Figure 3. Accuracy for each CNN model and active detectors 

4 Conclusions 

In this work, a study to use Convolutional Neural Networks to detect anomalies in neutron 
flux is carried out. To achieve this aim, a specific data preprocessing was done to the initial data 
from the BIBLIS 2D benchmark, which involved adding neutron noise for different frequencies. 
As a result, a dataset of 2570 neutron noise output files are obtained, one for each type of 
perturbation and its location and also for every noise frequency introduced. Then, the dataset is 
fed to the CNN models and AWGN is added to widen the data and avoid overfitting. 

As is previously shown, the accuracy of the chosen architectures is directly dependent on 
the number of active detectors, getting closer to guessing the 100% of the cases when 
augmenting the number of active detectors. Nonetheless, the optimal number of working 
sensors chosen for this problem can be said that is 8 due to the fact that the accuracy for the 
perturbation classification is already 99.95% and for locating the perturbation is 98.52%. In the 
case of the coupled training, the accuracy for the 8 active detectors distribution is similar to the 
obtained with the individual training, 100% for classifying and 97.04% for locating the 
perturbation. Then, the most suitable CNN model is the coupled training, for the classification 
and location are simultaneously obtained. 

Therefore, due to the good results reached with this research it can be concluded that the 
developed CNN models are valid techniques to create future tools based in Deep Learning, 
complementing the current monitoring and the tasks that technicians in nuclear power plants 
practice. Currently, these CNN models are being applied to 3D models and different types of 
perturbations are being considered. For future works, it is planned to use this models to study 
its usefulness in advanced nuclear reactors such as Molten Salt Reactors Small Modular 
Reactors. 
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