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1 Introduction

Vibratory systems appear in Physics and Engineering when studying mechanical structures. In the
nonlinear case, they can be formulated via second-order differential equations of the form [1],

X(t) +28X(t) +eg(X (1) +wgX(t) =Y (t), t>0, (1)

where X (t) is the spatial position, Y'(t) is the input or external forcing term acting upon the
system. The model parameters describing the oscillatory system are the damping constant, 5 > 0,
the undamped angular frequency, wg > 0, and the perturbation, €, that affects to the nonlinear
function g(X(t)), which depending on the spatial position. In real-world application the input may
depend on external factors that are not not deterministically, but involving uncertainties. This
motivates treating Y (¢) as a stochastic process rather than a deterministic function.

The analysis of random nonlinear oscillators subject to nonlinearities affected by a small per-
turbation can be approached by means of the perturbation technique [2]. This method allows us to
obtain approximations of the main statistics of the steady-state of model (1), such as the mean, vari-
ance, and higher moments. Recently, in [3] a class of nonlinear oscillators whose restoring function
is affected by small nonlinearities has been proposed and studied via the stochastic perturbation
technique. In particular, the system is described by the nonlinear function g(X(t)) = sin(X(¢))
and excited by stationary zero-mean Gaussian stochastic processes. However, the restriction to
problems with small perturbation parameter (le] < 1) is the main limitation of the stochastic
perturbation technique. An alternative method to construct reliable approximations of Equation
(1) is the equivalent linearization technique [4].

Therefore, the aim of this contribution is to study a class of random nonlinear oscillators with
a nonlinear function that depends only on the position via the stochastic equivalent linearization
technique, in order to obtain approximations of the main statistics of the steady-state, including
the first moments and the correlation function.
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2 Stochastic Equivalent Linearization

The stochastic linearization equivalent technique consists of, given a nonlinear differential equation,

X))+ f (X(t),X(t)) —Y(t), t>0, 2)

to construct an equivalent linear differential equation,

X (1) + 26X (1) + W2X (1) = Y (1), (3)

that it approximates the nonlinear model (2). To achieve this goal one minimizes the following
error

N(t) = 28X (1) + w2 X() - f (X(1), X(1)) . (4)

in some sense.
In order to minimize (4), a common criterion is to consider the mean-square error, say, N(t).
Therefore, we impose that the parameters 3. and w? be chosen such that

. N2
E{N*(t)} :E{[QBSXergX—f(X,X)} } (5)
is minimized for ¢ > 0, where E {-} denotes the expectation operator.

2.1 Probabilistic Model Study

In the present study, we will assume that g(¢f) = sin(X(¢)), i.e., the nonlinear function g only
depends on the position X (¢). This way

F(X(0), X)) = 28X (1) + i (X(1) + esin(X (1)) (6)

It is important to mention that the transcendental function sin(X (¢)) can be represented as a
truncation of its Taylor’s series,

. ()" o1
sin(X (1)) ~ Z W(X(t)) : (7)

m=0

In our subsequent analysis, we will consider M = 2, that corresponds to a Taylor’s approxima-

tion of order 5,
(X(1)* | (X(®)*

sin(X (¢)) ~ X (t) — i + i (8)
Then, the values 8. and w? are the solutions of the following equations:
. . 2 .
2(8. = B) B{(X(0)} + (w? = wf — ) E{XMX (1)} + SLE{(xX(1)*X (1)}
- (x@PH) =0

€wg

(2w — ) E{(X(1)*} +2(8. - ) E{ X)X ()} + S2E {(X(1)")

3!
— %E{(X(t))ﬁ} =0.

5!
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It can be proven that the stochastic process X (t) is a stationary zero-mean Gaussian which is
independent of X (¢). Therefore, it can be deduced, from (9), that 8. and w? are given by

Be =B, (10)

and

2 2
ews ewg
-5 EAXY S E{XY)

w?:w%%—ew%—i— 3! E{XQ}. (11)
2 2
€W €W,
:wg —I—ew% — 70 {ag(} + ?0{0—%(}2.

2.2 Variance Computation

Next, it is necessary the calculation of the variance in order to obtain the value of auxiliary
parameters (. and w,, thereby obtaining the solution of the equivalent linear equation (3) [5]. The
variance ag( can be computed from the spectral density function, Syy (w), of the input stochastic

process Y (t) as follows

% = /000 Sxx(w)dw = /000 ly(iw)|* Syy (w)dw, (12)

where y(iw) is the frequency response associated with the equivalent linear system described by

Equation (3). It has the form
1

w2 + 2ifew’

y(ivw) = W2 _ (13)

To facilitate the computation of . and w., we approximate the frequency response function
y(iw) by setting e = 0. Then g, = 8 and w, = wy, and O'g(o is given by

e 1

0%y = /000 lyo(iw) |* Sy'y (w)dw :/

Syy (w)dw.
0 (w2 —w?)? +4w2p2 v 19

Finally, the relations between the power spectral density of Y (¢) and the correlation function
I'yy is given by
1 [ _
Syy(w) = / efleFyy(T)dT. (15)
T

—0o0

2.3 Steady-State Solution

It is important to mention that the analysis of the steady-state solution of the Equation (3) can
be obtained by using the following representation of the solution of the linearized model,

X(t) = /0 T W)Y (¢ — $)ds, (16)

where ) )
niy = | (@2 =827 e sin ((w2-82)2t), ift>o, an
0, ift <0,

2

is the impulse response function for the underdamped case, —62 < 1.
we



Modelling for Engineering & Human Behaviour 2024

On the other hand, it can be seen that X (¢) is a zero-mean Gaussian process, then its odd-order
statistical moments are null,

E{(X®)"}=0, n=1,3,5,... (18)
Additionally, it can be proven that the second-order moment for X (¢) is given by
E{(X(1)*) = / h(s)/ h(s1)Tyy (5 — s1)ds1ds. (19)
0 0
From the previous consideration, E{X(t)} = 0, the covariance and correlation functions of

X (t) coincide, namely, C{X (t1)X(t2)} = I'xx(7), 7 = |t1 — t2|, where the correlation function of
X (t) is given by

Ixx(r) = /000 h(s) /000 h(s1)T'yy (T — s1 + s)dsids. (20)

2.4 Results and Discussion

To illustrate the previous theoretical results, we have chosen Y (t) = £(t) a Gaussian white-noise
process with zero-mean and correlation function I'yy (7) = mSpd(7), where §(7) is the Dirac delta

function and Sy = is the noise power. In this case, Equation (1) becomes

2007

X (1) + 26X (1) + w2X () = £(1). (21)

For this model, we have considered the following parameters 8, = 8 = 0.05, w3 = 1 and

I ew?
wg = Wi+ ewf — ok, + 5 (0%,)? where 0% = 0.025.
Remember that all the odd-order moments are null. Using expression (19), the second-order

moment is determined by
320

t)?} = :
) } 12800 + 1264 1€
Now, applying (20), we obtain the following approximation of the correlation function,

v ={ 4] 1720 g

(22)

B {(X(

where
64 . 300 1264l
- 35 | (63840 + 63205 o
1) = o768+ 126410 (12800 126410 ¢ [( +63205¢) COS( 200 © 12800)
(24)
300 1264l
201/25536 + 25282¢ sin | 1/ e
+20 * ES”“( 200 12800 )]
64 . 300  12641c
- % | (63840 + 63205 o
12(7) = (15768 + 19641e) (12800  126410) [( * €)COS< 200 12800>
(25)

399  12641e
— 202 25282¢ si == )
025536 + 2528 6sm< 100 + 12800)]

In Figure 1, we show the graphical representation of the correlation function, I'x x (7), given by
expression (23) for different values of e.
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Figure 1: Correlation function I'x x (7) of X (¢) for different values of e.

3 Conclusions

In this paper, we have studied random nonlinear oscillators subject to perturbations on the non-
linear term that depends only on the position, that have been excited by a stationary zero-mean
Gaussian process. In the study, we have obtained reliable approximations of the main statistics
of the steady-state taking advantage of the stochastic equivalent linearization technique. Finally,
we have illustrated the case in that the input excitation is a Gaussian white-noise. The numerical
results preserve the properties of the statistics such as the symmetry with respect of the origin of
the correlation function.
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