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1 Introduction

Vibratory systems appear in Physics and Engineering when studying mechanical structures. In the
nonlinear case, they can be formulated via second-order differential equations of the form [1],

Ẍ(t) + 2βẊ(t) + εg(X(t)) + ω2
0X(t) = Y (t), t > 0, (1)

where X(t) is the spatial position, Y (t) is the input or external forcing term acting upon the
system. The model parameters describing the oscillatory system are the damping constant, β > 0,
the undamped angular frequency, ω0 > 0, and the perturbation, ε, that affects to the nonlinear
function g(X(t)), which depending on the spatial position. In real-world application the input may
depend on external factors that are not not deterministically, but involving uncertainties. This
motivates treating Y (t) as a stochastic process rather than a deterministic function.

The analysis of random nonlinear oscillators subject to nonlinearities affected by a small per-
turbation can be approached by means of the perturbation technique [2]. This method allows us to
obtain approximations of the main statistics of the steady-state of model (1), such as the mean, vari-
ance, and higher moments. Recently, in [3] a class of nonlinear oscillators whose restoring function
is affected by small nonlinearities has been proposed and studied via the stochastic perturbation
technique. In particular, the system is described by the nonlinear function g(X(t)) = sin(X(t))
and excited by stationary zero-mean Gaussian stochastic processes. However, the restriction to
problems with small perturbation parameter (|ε| � 1) is the main limitation of the stochastic
perturbation technique. An alternative method to construct reliable approximations of Equation
(1) is the equivalent linearization technique [4].

Therefore, the aim of this contribution is to study a class of random nonlinear oscillators with
a nonlinear function that depends only on the position via the stochastic equivalent linearization
technique, in order to obtain approximations of the main statistics of the steady-state, including
the first moments and the correlation function.
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2 Stochastic Equivalent Linearization

The stochastic linearization equivalent technique consists of, given a nonlinear differential equation,

Ẍ(t) + f
(
X(t), Ẋ(t)

)
= Y (t), t > 0, (2)

to construct an equivalent linear differential equation,

Ẍ(t) + 2βeẊ(t) + ω2
eX(t) = Y (t), (3)

that it approximates the nonlinear model (2). To achieve this goal one minimizes the following
error

N(t) = 2βeẊ(t) + ω2
eX(t)− f

(
X(t), Ẋ(t)

)
, (4)

in some sense.

In order to minimize (4), a common criterion is to consider the mean-square error, say, N(t).
Therefore, we impose that the parameters βe and ω2

e be chosen such that

E
{
N2(t)

}
= E

{[
2βeẊ + ω2

eX − f
(
X, Ẋ

)]2}
, (5)

is minimized for t > 0, where E {·} denotes the expectation operator.

2.1 Probabilistic Model Study

In the present study, we will assume that g(t) = sin(X(t)), i.e., the nonlinear function g only
depends on the position X(t). This way

f
(
X(t), Ẋ(t)

)
= 2βẊ(t) + ω2

0 (X(t) + ε sin(X(t))) . (6)

It is important to mention that the transcendental function sin(X(t)) can be represented as a
truncation of its Taylor’s series,

sin(X(t)) ≈
M∑
m=0

(−1)m

(2m+ 1)!
(X(t))2m+1. (7)

In our subsequent analysis, we will consider M = 2, that corresponds to a Taylor’s approxima-
tion of order 5,

sin(X(t)) ≈ X(t)− (X(t))3

3!
+

(X(t))5

5!
. (8)

Then, the values βe and ω2
e are the solutions of the following equations:

2 (βe − β)E
{

(Ẋ(t))2
}

+
(
ω2
e − ω2

0 − εω2
0

)
E
{
X(t) ˙X(t)

}
+
εω2

0

3!
E
{

(X(t))3Ẋ(t)
}

− εω2
0

5!
E
{

(X(t))5Ẋ(t)
}

= 0,(
ω2
e − ω2

0 − εω2
0

)
E
{

(X(t))2
}

+ 2 (βe − β)E
{
X(t)Ẋ(t)

}
+
εω2

0

3!
E
{

(X(t))4
}

− εω2
0

5!
E
{

(X(t))6
}

= 0.

(9)
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It can be proven that the stochastic process X(t) is a stationary zero-mean Gaussian which is
independent of Ẋ(t). Therefore, it can be deduced, from (9), that βe and ω2

e are given by

βe = β, (10)

and

ω2
e = ω2

0 + εω2
0 +
−εω

2
0

3!
E
{
X4
}

+
εω2

0

5!
E
{
X6
}

E {X2}

= ω2
0 + εω2

0 −
εω2

0

2

{
σ2X
}

+
εω2

0

8

{
σ2X
}2
.

(11)

2.2 Variance Computation

Next, it is necessary the calculation of the variance in order to obtain the value of auxiliary
parameters βe and ωe, thereby obtaining the solution of the equivalent linear equation (3) [5]. The
variance σ2X can be computed from the spectral density function, SY Y (ω), of the input stochastic
process Y (t) as follows

σ2X =

∫ ∞
0

SXX(ω)dω =

∫ ∞
0
|y(iω)|2SY Y (ω)dω, (12)

where y(iω) is the frequency response associated with the equivalent linear system described by
Equation (3). It has the form

y(iω) =
1

ω2
e − ω2 + 2iβeω

. (13)

To facilitate the computation of βe and ωe, we approximate the frequency response function
y(iω) by setting ε = 0. Then βe = β and ωe = ω0, and σ2X0

is given by

σ2X0
=

∫ ∞
0
|y0(iω)|2SY Y (ω)dω =

∫ ∞
0

1(
ω2
0 − ω2

)2
+ 4ω2β2

SY Y (ω)dω. (14)

Finally, the relations between the power spectral density of Y (t) and the correlation function
ΓY Y is given by

SY Y (ω) =
1

π

∫ ∞
−∞

e−iωτΓY Y (τ)dτ. (15)

2.3 Steady-State Solution

It is important to mention that the analysis of the steady-state solution of the Equation (3) can
be obtained by using the following representation of the solution of the linearized model,

X(t) =

∫ ∞
0

h(s)Y (t− s)ds, (16)

where

h(t) =

{ (
ω2
e − β2e

)− 1
2 e−βet sin

((
ω2
e − β2e

) 1
2 t
)
, if t > 0,

0, if t ≤ 0,
(17)

is the impulse response function for the underdamped case,
β2e
ω2
e

< 1.
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On the other hand, it can be seen that X(t) is a zero-mean Gaussian process, then its odd-order
statistical moments are null,

E {(X(t))n} = 0, n = 1, 3, 5, . . . (18)

Additionally, it can be proven that the second-order moment for X(t) is given by

E
{

(X(t))2
}

=

∫ ∞
0

h(s)

∫ ∞
0

h(s1)ΓY Y (s− s1)ds1ds. (19)

From the previous consideration, E {X(t)} = 0, the covariance and correlation functions of
X(t) coincide, namely, C {X(t1)X(t2)} = ΓXX(τ), τ = |t1 − t2|, where the correlation function of
X(t) is given by

ΓXX(τ) =

∫ ∞
0

h(s)

∫ ∞
0

h(s1)ΓY Y (τ − s1 + s)ds1ds. (20)

2.4 Results and Discussion

To illustrate the previous theoretical results, we have chosen Y (t) = ξ(t) a Gaussian white-noise
process with zero-mean and correlation function ΓY Y (τ) = πS0δ(τ), where δ(τ) is the Dirac delta

function and S0 =
1

200π
is the noise power. In this case, Equation (1) becomes

Ẍ(t) + 2βeẊ(t) + ω2
eX(t) = ξ(t). (21)

For this model, we have considered the following parameters βe = β = 0.05, ω2
0 = 1 and

ω2
e = ω2

0 + εω2
0 −

εω2
0

2
σ2X0

+
εω2

0

8
(σ2X0

)2, where σ2X0
= 0.025.

Remember that all the odd-order moments are null. Using expression (19), the second-order
moment is determined by

E
{

(X(t))2
}

=
320

12800 + 12641ε
. (22)

Now, applying (20), we obtain the following approximation of the correlation function,

ΓXX(τ) =

{
f1(τ) if τ ≥ 0,
f2(τ) if τ < 0,

(23)

where

f1(τ) =
64

(12768 + 12641ε)(12800 + 12641ε)
e−

τ
20

[
(63840 + 63205ε) cos

(√
399

400
+

12641ε

12800

)

+ 20
√

25536 + 25282ε sin

(√
399

400
+

12641ε

12800

)]
,

(24)

f2(τ) =
64

(12768 + 12641ε)(12800 + 12641ε)
e
τ
20

[
(63840 + 63205ε) cos

(√
399

400
+

12641ε

12800

)

− 20
√

25536 + 25282ε sin

(√
399

400
+

12641ε

12800

)]
.

(25)

In Figure 1, we show the graphical representation of the correlation function, ΓXX(τ), given by
expression (23) for different values of ε.
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Figure 1: Correlation function ΓXX(τ) of X(t) for different values of ε.

3 Conclusions

In this paper, we have studied random nonlinear oscillators subject to perturbations on the non-
linear term that depends only on the position, that have been excited by a stationary zero-mean
Gaussian process. In the study, we have obtained reliable approximations of the main statistics
of the steady-state taking advantage of the stochastic equivalent linearization technique. Finally,
we have illustrated the case in that the input excitation is a Gaussian white-noise. The numerical
results preserve the properties of the statistics such as the symmetry with respect of the origin of
the correlation function.
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