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1 Introduction 

The objective of this work is to tackle the wear problem for reduced-diameter wheels, which 

presumably do not undergo the same degradation as the ordinary-diameter wheels due to its 

greater angular contact with the rail. For that, a calculation model able to determine the life of 

a wheel as a function of operating factors, such as the nominal wheel diameter, is developed.  

Nowadays, the needs in the field of logistics are changing and new transportation models are 

arising. One of the models that is becoming more popular in the last years is the rail motorway 

model, which consists in transporting whole freight articulated vehicles (road vehicles) on 

railway wagons (Jaro & Folgueira, 2012). Figure 1 shows a schematic diagram of this concept: 

Figure 1. Rail motorway train ready for road vehicles (un)loading. Source: Own elaboration.    

The adoption of this model often encounters the problem of loading gauge: Due to the height 

of the road vehicles (around 4 m), placing them on wagons leads to a further height increase 

over the rails that may conflict with the limits found in some tunnels or under some overpasses. 

One of the ways to reduce the total height is by using reduced-diameter wheels.  

The process consists of defining a mathematical model under the behavioral equations extracted 

from the models that can explain wheel degradation, each of which includes a set of hypotheses. 

The analytical model should have to include as many influence factors as possible; however, 

the model size must be restricted for it to be computationally – efficient. That implies that 

additional hypotheses will be formulated in order to take out those factors with a lesser 

influence on wheel degradation.  

The main contribution of this work consists in tackling the physical problem of wear for 

reduced-diameter wheels, which has been hardly treated due to the uniqueness of these wheels. 

Wheel, wheelset and bogie kinematics and dynamics have been studied in-depth, which makes 

the work insightful as it provides comprehension as to why wheel life depends on its diameter. 
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2 Methods 

This work follows a deductive method, as explained next: 

First, the rail – wheel contact problem has been studied basing on the contact friction mechanics 

theory and the works and studies conducted from the second half of the 18th century.  

Second, the contact models have been assessed regarding two criteria: accuracy and 

computational effort. Those with a higher accuracy and a lower computational cost have been 

chosen Hertz’s solution, Polach’s method, center of friction, energy transfer and fatigue index.  

For their application, the vehicle – track interface has been parametrized, which means that the 

factors involved in the said interaction have been assigned parameters. 

Each of this models consists of a set of equations, which can be used to interrelate the models, 

so it is possible to construct a numerical analysis model in the form of an algorithm thanks to 

the existing links and adding new links (geometrical and other mathematical relations, for 

instance). This algorithm is programmed on mathematical equation solving software, which 

allows solving all of the equations after having inputted the data required by the models.  

The algorithm output is the wear depth of each wheel on a bogie, but the appearing of RCF can 

be predicted as well. When the wear depth reaches a fixed limit on a wheel, then all of the bogie 

wheels are reprofiled with a lathe and the wear cycle starts over (the algorithm is run again).  

Finally, the results for wheels of different diameter wheels are compared and conclusions upon 

their behavior and the diameter influence are drawn.  

2.1 List of abbreviations 

The abbreviations used in the rest of the article can be consulted in Table A1 for those with 

Latin symbols and Table A2 for those with Greek symbols (both in Annex 1).  

2.2 Hypotheses 

The following hypotheses have been regarded besides the application hypotheses of the models 

applied (Hertz’s solution, Polach’s method and center of friction model):   

1. The procedure is based on global calculations for the contact patch, without discretizing

it into finite elements.

2. It is stationary, that is, it does not consider the variation of variables over the time. At

transition curves, where these variations are greater, mean values are computed.

3. It disregards any rail wear and it does not consider the previous wheel wear either (it

does not update the contact parameters as the profile wears out, but this profile is

assiduously renovated).



4. It is applied on all of the bogie wheels. For each wheel, the parameters and wear

calculations are separately saved. This is because the wear is not the same for all of the

wheels mounted on the same bogie (Rovira, 2012).

5. It is applied on one bogie belonging to a wagon. A wagon normally consists of two

bogies, but they can mostly rotate independently with respect to the other.

6. It can consider up to 2 contact patches at the same wheel: one of them on the tread and

the other on the flange. The load percentage of each patch will be controlled by means

of a parameter (Pellicer & Larrodé, 2021).

7. Creepage is obtained from a kinematic analysis of the wheelsets rather than from the

non-dimensional slips (these include partial derivatives which are usually not applied to

global calculations).

8. In the whole study, the radial deformation 𝛿𝑜  is disregarded with respect to the wheel

radius 𝑟𝑜 (this is a usual hypothesis in these studies because 𝛿𝑜 ≪ 𝑟𝑜).

9. As 𝛷 ≪ 𝛾𝑜 (in fact, 𝛷 ≪ 𝜓 ≪ 𝛾𝑜, judging by the values obtained in (Pellicer & Larrodé,

2021)), the effect of Φ on 𝛾𝑜 can be disregarded as well.

10. In contrast, the effect of 𝛷 ̇ on the wear happening at transition curves is not considered,

given that it increases the wear slightly.

11. Only abrasive and adhesive wear are considered, without considering defects such as

cracks, spalling, squats, flats, etc. (Ortega, 2012), (RENFE, 2020).

12. RCF is only predicted, without computing the cracks generated (Ortega, 2012).

13. The bogie wheels are considered to be non-powered, so 𝐹𝑡=0 at the wheel-rail interfaces.

14. The bogie wheels are considered to be equipped with disk brakes, which do not wear

the wheels out (Pellicer & Larrodé, 2021).

15. The railway vehicle is presumed to negotiate curves (circular or transition ones) at a

constant speed, so it brakes (if necessary) before negotiating them, so 𝐹𝑓=0 at a curve.

16. The influence of manufacturing or assembly tolerances of any element is not considered.

17. By not considering rail deflection or manufacturing and assembly tolerances, it is

possible to assume that the longitudinal rail curve radius (𝑅𝑦,1) tends to infinity, so that

the associated curvature (1/𝑅𝑦,1) tends to zero and can be taken as such.

2.3 Calculation Process 

An algorithm consisting of blocks has been constructed and is shown in Figure 2, where input 

data blocks are represented in green, intermediate equation blocks are in blue (light for 

kinematics and dark for dynamics) and the output blocks are in purple. The orange symbol with 

a diagonal cross represents the addition of values, the orange one with a Greek cross indicates 

a disjunctive, the gray one indicates that only one flow is inputted and the yellow a bifurcation:  



Figure 2. Flow diagram of the calculation process (algorithm). Source: Own elaboration. 

2.4 Graphic description of the variables 

First, four reference frames have been defined for the kinematics and dynamics analyses 

described in the next pages. These frames are described below and shown in Figure 3(a) for a 

wheelset (for the whole bogie does not need a specific reference frame):    

• Absolute reference frame 𝑋𝑌𝑍, clockwise, fixed on the rolling plane.

• Track reference frame 𝑥̃𝑦̃𝑧̃, clockwise, mobile at the vehicle speed, on the rolling plane.

• Axle reference frame 𝑥̿𝑦̿𝑧,̿ clockwise, mobile at the axle speed, at the wheelset center.

• Contact area reference frame 𝑥𝑐𝑦𝑐𝑧𝑐, clockwise, mobile at the area speed, at its center.

These reference frames are mainly used for defining and placing and defining kinematic 

parameters (Figure 3(b)) and also contact patches and tangential forces at the wheels of a bogie 

(Figure 3(c)).  

Finally, the elimination of wear by means of reprofiling is shown, which can be performed by 

reprofiling when its depth reaches a certain threshold (Alba, 2015): 

        



Figure 3. (a) Reference frames definition; (b) Wheelset positioning on a narrow curve where 

there is an uncentering limit imposed by geometrical constraints (for Iberian gauge, 𝐽 = 1668 

mm and 𝑛𝑜.= 20, so 
𝐽

2
= 884 mm); (c) Tangential forces and torques associated with the

creepages at each wheel of a four-wheeled bogie; (d) Reprofiling of a wheel which has lost 

material to wear. Source: Own elaboration. 

2.5 Kinematics equation blocks 

References (Fissette, 2016), (Moody, 2014), (Oldknow, 2015), (Ortega, 2012), (Rovira, 2012) 

and (Sichani, 2016) explain how to obtain the kinematic parameters for the wheelsets through 

relations dependent on the railway line geometries; namely, straight stretch, circular curve and 

transition curve (clothoid, quadratic parabola or cubic parabola).   

The parameters obtained at these geometries are described in Reference (Pellicer & Larrodé, 

2021): uncentering and uncentering speed, average uncentering and uncentering speed, yaw 

angle and yaw angle variation speed / rate, average sinus of yaw angle and of yaw angle 

variation, average yaw angle, combination of the uncentering and yaw angle effects, angle of 

longitudinal displacement of the contact area, and, finally, tilt and tilt speed / rate.  

As explained in References (Oldknow, 2015), (Ortega, 2012), (Rovira, 2012) and (Sichani, 

2016), the total uncentering of a wheelset (𝑦*) can be computed by adding the original 

uncentering ((𝑦, which is the distance between the wheelset center of gravity and the track 
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center). The reason why uncentering must be saturated is because there exists a geometrical 

constraint: the flange (the flange enters in contact with the rail).  

As to the creepages, they are the rigid slip velocities divided by the vehicle speed in order to 

turn them into non-dimensional. References (Fissette, 2016), (Ortega, 2012), (Pellicer & 

Larrodé, 2021) and (Sichani, 2016) explain how to compute them from kinematics parameters: 

1. Longitudinal creepage: Difference between the nominal wheel radius and the real

rolling one (generates 𝑉𝑥
𝐼), application of tractive or braking torques to the wheel

(𝑉𝑥
𝐼𝐼) and variation of yaw angle (𝑉𝑥

𝐼𝐼𝐼).

2. Transversal creepage: Not null yaw angle (Δ𝑉𝑦
𝐼), adoption of a new equilibrium

position by the wheelset (Δ𝑉𝑦
𝐼𝐼) and not null tilt angle (Δ𝑉𝑦

𝐼𝐼𝐼).

3. Spin: Conicity (Δ 𝐼; “camber effect”) and variation of yaw angle (Δ 𝐼𝐼).

Finally, the main kinematics equations are shown: uncentering (1), its saturation (2 – 5), 

creepages definition (6 – 8), longitudinal creepage (9 – 11), transversal creepage (12 – 14) and 

spin (15 – 17):  

𝑦 =
𝑟𝑜 𝑜
𝑘𝑅

(1) Δ𝑉𝑥 = −Δ𝑟 𝜔 − 𝑟𝑜𝜔
′ ±  𝑜𝜓̇ (10) 

𝑦∗ (1𝑠𝑡  𝑤ℎ𝑒𝑒𝑙𝑠𝑒𝑡) = 𝑦 + 𝑒
𝜋 |𝜓|

360
(2) 𝑣𝑥 =

−Δ𝑟

𝑟𝑜
+
−𝑟𝑜𝜔

′ ±  𝑜𝜓̇

𝑉
(11) 

𝑦∗ (2𝑛𝑑 𝑤ℎ𝑒𝑒𝑙𝑠𝑒𝑡) = 𝑦 − 𝑒
𝜋 |𝜓|

360
(3) Δ𝑉𝑦 = 𝑉𝑦

𝐼 + 𝑉𝑦
𝐼𝐼𝐼 + 𝑉𝑦

𝐼𝐼𝐼 (12) 

𝑦𝑙𝑖𝑚
∗ =

𝜂

2
+ 𝜉 (4) Δ𝑉𝑦 = −𝑉𝑠𝑒𝑛𝜓 𝑐𝑜𝑠𝛾𝑜 + 𝑦̇ cos 𝛾𝑜 − 𝑟𝑖 ̇ cos 𝛾𝑜 (13) 

𝑦∗ = 𝑦lim
∗  (if the former was greater before) (5) 𝑣𝑦 = (−𝑠𝑒𝑛𝜓 +

𝑦̇ − 𝑟𝑖 ̇

𝑉
) cos𝛾𝑜 (14) 

𝑣𝑥 = Δ𝑉𝑥 𝑉⁄ (6) Δ = Δ 𝐼 + Δ 𝐼𝐼 (15) 

𝑣𝑦 = Δ𝑉𝑦 𝑉⁄ (7) Δ = ±𝜔 𝑠𝑒𝑛𝛾𝑜 + 𝜓̇ cos 𝛾𝑜 (16) 

 =  𝑉⁄  (8) = ±
𝑠𝑒𝑛 𝛾𝑜
𝑟𝑜

+
𝜓̇ 𝑐𝑜𝑠𝛾𝑜

𝑉
(17) 

Δ𝑉𝑥 = 𝑉𝑥
𝐼 + 𝑉𝑥

𝐼𝐼𝐼 + 𝑉𝑥
𝐼𝐼𝐼 (9) 

2.6 Dynamics equation blocks 

The normal force is exerted by the rail on the wheel as a response to the opposite force the latter 

exerts on the former. References (ADIF, 1983 – 2021), (Andrews, 1986), (Fissette, 2016), 

(Moody, 2014), (Rovira, 2012), (Tipler & Mosca, 2014) provide some information on how to 

compute the normal force on each wheel. However, the most important Reference is (Pellicer 

& Larrodé, 2021), as it is the one which fills the gaps and obtains the normal force on each 

wheel as a function of these factors: axle load (𝜆𝑒𝑗𝑒), center of gravity of the axle load (𝐻𝐶𝑑𝐺), 

gradient angle (𝛽𝑟𝑝) inferred from the inclination (𝑖), cant angle (𝜗𝑟), lateral acceleration (𝑎𝑙𝑎𝑡), 

which considers the effect of cant excess of deficiency, and, finally, wheel contact angle (𝛾𝑜) 

and longitudinal displacement angle of the contact patch (𝜍). This allows computing the normal 



force on the external and internal wheel to a curve (𝑁𝑒 and 𝑁𝑖, respectively) and decomposing 

it in their perpendicular and parallel components (𝑁⊥ and 𝑁∥).  

On the other hand, an isolated wheel transmits its own weight and its load to the rail, with which 

is shares an interface: the contact area. The contact area must be greater than zero in order to 

avoid an infinite normal stress. Both the contact area (geometry problem) and the normal stress 

must be determined so as to compute the wear and know where it acts (normal problem). As 

explained in Reference (Sichani, 2016), whenever two bodies make contact, that contact can be 

non-conformal or conformal. In the former, the contact area is relatively small in comparison 

with the characteristic size of the bodies; while in the latter, the geometry of a body adapts to 

the geometry of the other, resulting in a relatively big contact area (happening when the wheel 

and rail are heavily worn-out). Conformal contacts can be further simplified if the quasi-identity 

relation is fulfilled, which means that a relation between the shear modulus and the Poisson’s 

ratio exists; this condition is fulfilled because the materials in contact are the same (steel). 

Both the geometric and the normal contact problem are solved together, and in References 

(Ortega, 2012), (Rovira, 2012) and (Sichani, 2016), some theories for solving them are 

commented upon. As stated in Reference (Pellicer & Larrodé, 2021), which collects the 

theories, the Herztian contact theory is the most common due to its high accuracy, low 

computing effort and because the hypotheses it brings are fulfilled for most of the cases:  

• The bodies in contact are homogeneous, isotropic and linear elastic.

• Displacements are supposed to be infinitesimal (much smaller than the bodies’

characteristic dimensions).

• The bodies are smooth at the contact zone, that is, without any roughness.

• Each body can be modeled as an elastic half-space, which requires non-conformity.

• The bodies’ surfaces can be approximated by quadratic functions in the vicinity of the

maximum interpenetration point. This implies that the curvatures (the second derivates

of the functions) are constant.

• The distance between the undeformed profiles of both bodies at the maximum

interpenetration point can be approximated by a paraboloid.

• The contact between the bodies is made without friction, so only normal pressure can

be transmitted.

Nonetheless, the Hertzian model ignores the forces and torques due to friction: as a consequence 

of the relative motion between the wheel and the rail in the longitudinal and lateral directions 

and around the vertical axis (𝑧𝑐), opposing forces and torques appear. These are associated with 

tangential stresses and deformations at the contact area, specifically at the slip region of the 

ellipse (split into one stick and one slip region). There are two ways to compute these variables:  

• Analytical way: The values are globally computed for the whole contact patch. A set of

analytical equations are used, and the tangential problem can be decoupled from the

geometric and normal ones because non-conformity and quasi-identity are satisfied.

• Finite-element way: The values of the variables are locally computed and are added

thereafter so as to obtain the global values. For that, the contact patch is meshed.



In the current work, the analytical way is chosen, inasmuch as that it allows tackling the problem 

with an algorithm which comes to the results at a good accuracy – computational effort ratio. 

For the computation of these tangential forces and also the spin torque, in References (Rovira, 

2012), (Sichani, 2016) and (Ortega, 2012) some models are commented upon. Reference 

(Pellicer & Larrodé, 2021) collects them, concluding that Polach’s method is the most 

appropriate for considering the spin effect, since it brings accurate results with a low effort. 

So as to find the reaction that the rail exerts on the flange when they enter in contact, Reference 

(Andrews, 1986) proposes the center of friction model. This model states that every bogie, when 

curving, has a point at which, if a wheel were mounted there, this wheel would spin ideally, that 

is, with no slip. This point is called the center of friction and determining it allows computing 

the forces exerted by the rail on the flange – rail contact through force and torque balances.  

As for the load distribution on each contact, Reference (Piotrowski & Chollet, 2005) explains 

the Sauvage model, a heuristic method to obtain the total indentation (𝛿𝑜) as the sum of the 

indentation at the tread – rail contact (𝛿𝑏𝑟) and that at the flange – rail contact (𝛿𝑝𝑒). Reference 

(Pellicer & Larrodé, 2021) simplifies the Sauvage model by introducing the load distribution 

coefficient (𝛼𝑓𝑛), ranging from 0.5 (same normal load for both contacts) and 1 (the tread contact 

would become discharged). Its usual values are taken from the results of the Sauvage model: 

0.7 – 0.8. At the end, this method is combined with the center of friction one.  

Finally, the dynamics equations are presented: Eqs. 18 – 26 allow computing the normal force 

on each wheel (Larrodé & Pellicer, 2021), Eqs. 27 – 36 allow applying Hertz’s solution 

(Greenwood, 2018), (Hertz, 1882), Eqs. 37 – 46 allow applying Polach’s method (Polach, 

2000), (Polach, 2005) and, finally, Eqs. 47 – 51 allow applying the center of friction model: 

𝜆𝑒𝑗𝑒 =
𝜆𝑢+𝜆𝑡𝑎𝑟𝑎

𝑛𝑒𝑗𝑒𝑠
  (18) 

𝑝 𝑜 =
 𝐹𝑧

2𝜋𝑎𝑏 (35) 

𝐻𝐶𝑑𝐺 =

1

𝑛𝑒𝑗𝑒𝑠
(𝜆𝑢𝐻𝑢+𝜆𝑡𝑎𝑟𝑎𝐻𝑡𝑎𝑟𝑎) 

1

𝑛𝑒𝑗𝑒𝑠
(𝜆𝑢+𝜆𝑡𝑎𝑟𝑎)

(19) 𝛿𝑜 = 𝑟𝐻 ((
 

2
𝑁

1−𝜈2

𝐸
)
2

(𝐴 + 𝐵))

1

3

(36) 

𝛽𝑟𝑝 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑖

1000
) 

(20) 
𝑠𝑖 =

𝜇𝑁⊥

𝐺𝑎𝑏 𝐶𝑗𝑗
𝑣𝑖 ,    𝑖, 𝑗 = 𝑥, 1;   𝑖, 𝑗 = 𝑦, 2

(37) 

𝜗𝑟 = 𝑎𝑟𝑐𝑠𝑒𝑛 (
ℎ𝑟

2𝑏𝑜
) 

(21) 
𝑠𝑦,𝐶 = 𝑠𝑦 + (− )𝑎,  |𝑠𝑦 + (− )𝑎| > |𝑠𝑦|

(38) 

𝑎𝑙𝑎𝑡 =
𝑉2

𝑅+𝑦
−

ℎ𝑟
′

2𝑏𝑜
 𝑔 𝑐𝑜𝑠𝛽𝑟 (22) 𝑠𝑦,𝐶 = 𝑠𝑦 ,  |𝑠𝑦 + (− )𝑎| ≤ |𝑠𝑦| (39) 

𝑁𝑒 =
𝜆𝑒𝑗𝑒

2
(1 +

𝑦

𝑏𝑜
) 𝑔 𝑐𝑜𝑠𝜗𝑟 𝑐𝑜𝑠𝛽𝑟𝑝 +

𝜆𝑒𝑗𝑒

2𝑏𝑜
𝑎𝑙𝑎𝑡𝐻𝐶𝑑𝐺 (23) 𝐹 = −

2𝜇𝑁⊥

𝜋
(

𝜀

1+𝜀2
+ 𝑎𝑟𝑐𝑡𝑎𝑛𝜀) (40) 

𝑁𝑖 =
𝜆𝑒𝑗𝑒

2
(1 −

𝑦

𝑏𝑜
) 𝑔 𝑐𝑜𝑠𝜗𝑟 𝑐𝑜𝑠𝛽𝑟𝑝 −

𝜆𝑒𝑗𝑒

2𝑏𝑜
𝑎𝑙𝑎𝑡𝐻𝐶𝑑𝐺 (24) 𝐹𝑖 = 𝐹

𝑠𝑖

𝑠
,  𝑖 = 𝑥, 𝑦 (41) 

𝑁⊥ =  𝑁𝑒|𝑖 cos(𝜍) cos(𝛾𝑜) (25) 𝐹𝑦,𝑆 = −
9

16
𝑎 𝜇𝑁⊥ 𝐾𝑀 [1 + 6,3 (1 − 𝑒−

𝑎

𝑏)]
(−𝜑)

𝑠𝐶
(42) 

𝑁∥ = 𝑁𝑒|𝑖 cos(𝜍) sin(𝛾𝑜) (26) 𝐹𝑦,𝐶 = 𝐹𝑦 + 𝐹𝑦,𝑆 (43) 

𝐴 =
1

2
(

1

𝑅𝑦1

+
1

𝑅𝑦2

) (27) 𝐹 = −
2𝜇𝑁⊥

𝜋
(

𝑘𝐴𝜀

1+(𝑘𝐴𝜀)
2 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑘𝑆𝜀)) (44)



𝐵 =
1

2
(

1

𝑅𝑥1
+

1

𝑅𝑥2
) (28) 𝜇 = 𝜇𝑜[(1 − 𝐴𝑓)𝑒

−𝑤𝐵𝑓 + 𝐴𝑓] (45) 

𝑅𝑦2
=

𝑟

𝑐𝑜𝑠𝛾𝑜
(29) 𝑤𝑖 = 𝑠𝑖𝑉  𝑖 = 𝑥, 𝑦 (46) 

𝐴𝑐 = 𝜋𝑎 (30) 𝜁𝑣 = 𝛼𝑓𝑛𝑁𝑒 (47) 

𝑎 = 𝑚𝐻 (
 

2
𝑁

1−𝜈2

𝐸

1

𝐴+𝐵
)

1

3 (31) 
𝑁𝑝 = 𝜁𝑣 𝑐𝑜𝑠𝛾𝑜 + 𝜁ℎ  𝑠𝑒𝑛𝛾𝑜 (48) 

= 𝑛𝐻 (
 

2
𝑁

1−𝜈2

𝐸

1

𝐴+𝐵
)

1

3 (32) (−𝐹𝑡|+𝐹𝑓) = −∑ 𝐹𝑥,𝑖
′𝑖=𝑍𝑤+2

𝑖=1 (49) 

1−𝜈2

𝐸
=

1

2
(
1−𝜈1

2

𝐸1
+

1−𝜈2
2

𝐸2
) (33) 𝜁ℎ,1 − 𝜁ℎ,𝑍𝑤 = ∑ 𝐹𝑦,𝑖

′𝑖=𝑍𝑤+2
𝑖=1 (50) 

𝑐𝑜𝑠𝜃 =
|𝐵−𝐴|

𝐴+𝐵 (34) 
𝜁ℎ,1𝓊𝑓𝑙,1 − 𝜁ℎ,𝑍𝑤𝓊𝑓𝑙, = ∑ (𝐹𝑦,𝑖

′  𝓊𝑓,𝑖) +
𝑖=𝑍𝑤+2
𝑖=1

+∑ (𝐹𝑥,𝑖 
′ 𝓋𝑓,𝑖)

𝑖=𝑍𝑤+2
𝑖=1

(51) 

2.7 Calculation of wear and prediction of RCF 

Abrasive wear is due to the relative movement between the wheel and rail surfaces and their 

roughness, which cause friction and this, in turn, the loss of wheel and rail material. In contrast, 

adhesive wear is due to plastic deformation and to the cohesive forces appearing between both 

surfaces (Van der Waals, electrostatic or chemical), which ends up producing a material transfer 

from one surface to the other (Rovira, 2012). For wheel wear characterization, the same 

Reference listed the following hypotheses:  

1. The equations are parametrized for abrasive wear and not for adhesive wear because:

(both phenomena are included in the resulting wear law if experimentally calibrated).

2. The different mathematical tools study the wear on the wheel profile, where the wear

estimated at every instant is cumulative.

3. Wear is assumed to be regular: the variation of the transversal profile is studied, not

pattern formation along the longitudinal (circumferential) direction. Thus, the wear at a

certain position and instant is extrapolated to the whole circumference.

4. At the contact interface there are not any pollutants. The effect of pollutants is

considering by modifying the friction coefficient or introducing new wear laws.

Considering these hypotheses, the models commented upon in References (Rovira, 2012) and 

(Sichani, 2016) can be applied to wheel wear characterization. In Reference (Pellicer & 

Larrodé, 2021), energy transfer models and the RAK model are collected and assessed and it 

was determined that the energy transfer using the USFD wear law since its wear law is 

continuous, so small errors do not lead to great errors in the end.  

Under high axle loads, the stress distribution around the contact patch may cause fatigue cracks 

on the wheel surface or inside it. For only predicting if RCF is to appear or not, the fatigue 

index model developed by Reference (Dirks, Ekberg & Berg, 2015) and presented in Reference 

(Sichani, 2016) is useful. The fatigue index (𝐹𝐼𝑠𝑢𝑓) is simply the utilized friction term (𝜇𝑢) 

minus the shakedown limit (𝐿𝑅𝐶𝐹) and by comparing its value with zero, 3 situations can be 

observed: if 𝐹𝐼𝑠𝑢𝑓 < 0, RCF is not enough for initiating cracks, while if  𝐹𝐼𝑠𝑢𝑓 = 0, this is the 

limit situation and cracks are not initiated yet. However, if 𝐹𝐼𝑠𝑢𝑓 > 0, RCF initiates cracks on 

the surface since the tangential force is elevated.  



Finally, the main equations of the USFD law (52 – 56) and the fatigue index model (57 – 59) 

are presented:  
𝑇𝛾

𝐴𝑐

=
|𝐹𝑥𝑣𝑥| + |𝐹𝑦𝑣𝑦| + |   |

𝐴𝑐

 (52) 𝐻𝑈𝑆𝐹𝐷 =  𝑅,𝑈𝑆𝐹𝐷  
𝑎 𝐿𝑟𝑟  

𝜌𝜋𝑟𝑟𝑟
10 (56) 

 𝑅,𝑈𝑆𝐹𝐷 = 5.3 
𝑇𝛾

𝐴𝑐

, 𝑓𝑜𝑟 
𝑇𝛾

𝐴𝑐

≤ 10.4 (53) 𝐹𝐼𝑠𝑢𝑟𝑓 = 𝜇𝑢 − 𝐿𝑅𝐶𝐹  (57) 

 𝑅,𝑈𝑆𝐹𝐷 = 55.0, 𝑓𝑜𝑟 10.4 <
𝑇𝛾

𝐴𝑐

≤ 77.2 (54) 𝐹𝐼𝑠𝑢𝑟𝑓 =
√𝐹𝑥

2 + 𝐹𝑦
2

𝑁
−
𝜏𝑙𝑖𝑚
𝑝 𝑜

(58) 

 𝑅,𝑈𝑆𝐹𝐷 = 55.0 + 61.9 (
𝑇𝛾

𝐴𝑐

− 77.2) , 𝑓𝑜𝑟
𝑇𝛾

𝐴𝑐

> 77.2 (55) 𝐹𝑚𝑎𝑥,𝑅𝐶𝐹 =
2

3
𝜏𝑙𝑖𝑚𝜋𝑎 (59) 

2.8 Software Choice 

Once the algorithm architecture and details have been defined, it must be implemented in an 

equation solving program. Due to the large number of input data, equations, relations, functions, 

procedures and subroutines which had to be implemented, only software capable of processing 

the entire volume of data in an agile way has been considered. After considering several options 

(Mathematica, Matlab and Engineering Equation Solver), Engineering Equation Solver (Klein, 

1993) has been chosen, as it is a program which allows building algorithms with any 

architecture, basing on functions, procedures and subroutines defined in F-Chart programming 

language, which is a variation of Pascal. The program rearranges internally the equations blocks 

defined by the user, takes the inputs needed for the new blocks and obtains the requested outputs 

by means of iterations. These results are obtained after an undetermined number of iterations, 

depending on adjustable stop criteria such as the relative residuals, which can be as low as 10−10, 

or the limit of iterations. The specific version with which the results were obtained is 

Engineering Equation Solver Professional V9.457-3D (EES). The chosen program, besides 

solving algorithms, can create parametric tables and graphs derived from those equations.  

2.9 Calculation Scenarios 

The objective is to calculate the wear as a function of operating factors such as the nominal 

diameter for various wheels and compare the results. For the comparison, these commercial 

bogies, used or proposed on rail motorways, have been chosen:  

• Y – 25: This bogie consists of four wheels (thus, it is composed of two wheelsets) and

it can take up 45 t in total (22.5 t/axle) at a maximum speed of 120 km/h. The axle span

(𝑒) is variable and the wheels are braked, in general, by brake shoes. The wheel nominal

diameter (𝐷) ranges from 920 mm (original) to 840 mm (operational minimum).

• Saas-z 703: This bogie also consists of four wheels (so two wheelsets) and it can take

up 32 t (16 t/axle) at 100 km/h. The axle span (𝑒) is variable and the wheels are braked

by brake disks. The wheel nominal diameter (𝐷) ranges from 680 mm to 630 mm.



• Graz Pauker 702: This bogie is composed of eight wheels (so four wheelsets) and it can

withstand 20 t (5 t/axle) at 100 km/h. The axle span (𝑒) is variable and the wheel nominal

diameter (𝐷) ranges from 355 to 335 mm.

These bogies are different each other, but the comparisons should be performed under the same 

conditions (only excluding the nominal diameter variation), yet comparing the scenarios under 

the same conditions is not always possible, as stated in Reference (Pellicer & Larrodé, 2021):  

1. Axle load (𝜆𝑒𝑗𝑒): If a constant axle load value were given for all of the cases, then the

wheels would be overloaded in some scenarios, while underloaded in others. On the one

hand, some values as high as 22.5 t/axle would be unrealistic and unfeasible for the 680

and 355-mm wheels. On the other hand, some values as low as 5 t/axle would be realistic

and feasible, although the smallest wheel (355 mm) would be fully loaded, working at

maximum normal pressure and tangential stresses at the tread – rail interface, while the

biggest wheel (920 mm) would be barely loaded, working at low values of those

variables. In order to ensure (as much as possible) the same conditions, the axle load

generating the same normal pressure is to be chosen. Specifically, the axle load

generating a 1,235 MPa normal pressure.

2. Flange radius (𝑟𝑝): It is the addition of the nominal rolling radius (𝑟𝑜, which is a half of

𝐷) and a constant. So 𝑟𝑝 decreases in proportion with 𝐷.

The rest of conditions are the same (for instance, the axle span) and are discussed in the Input 

data section. Only realistic, feasible and plausible values are set and even variations in the 

geometry and friction are considered (the variation of dry friction with speed).  

Taking all of this into account, the three scenarios are established: 920-mm, 680-mm and 355-

mm wheels. For each of them, the input data is entered at first, and then the program runs the 

algorithm for every stretch of the railway line, switching the direction when the end station is 

reached. When the wear depth reaches a certain threshold (1 mm in this case, a low value as the 

wheel profiles are not steadily updated), then the wheel is reprofiled and the scenario execution 

starts over with a new wheel profile (with a lesser diameter now). After a certain number of 

reprofiling cycles is reached, the minimum allowed diameter is reached, and the scenario 

execution ends. All of this leads to the results: the wheel diameter – mileage curves.  

2.10 Input Data 

For the three scenarios, the wheel profile portrays the geometry of the 1/40 standard profile and 

is made from ER8 steel grade, while the rail profile portrays the geometry of the 60E1 standard 

profile and is made from R260 steel grade (AENOR, 2011 – 2021). Most of the wheelset and 

bogie characteristics, which are taken from the bogie comparison carried out in Reference 

(Pellicer & Larrodé, 2021) are also common to the three scenarios. The same for the parameters 

used to modify friction with speed according to Polach’s method (implemented with variable 

friction under dry conditions). These common input data are shown in Table A3 (Annex 1).   



However, some features as the diameter, number of axles, axle load and flange radius are not 

common and depend on the scenario. These scenario-dependent are discussed in Reference 

(Pellicer & Larrodé, 2021) and are displayed in Table A4 (Annex 1).    

As for the railway line parameters, the calculation is performed for the three scenarios with data 

from a non-existing railway line. The design parameters of a railway line are defined in 

References (ADIF, 1983 – 2021) and (Vera, 2016), although not all of the parameters are used 

for wear calculation. In Reference (Pellicer & Larrodé, 2021), a railway line is defined stretch 

by stretch, with these parameters: initial and final metric points (𝑄𝑖𝑛 and 𝑄𝑓); type of stretch: 

RECTA (straight), CIR (circular curve), CLO (clothoid), PARACUAD (quadratic parabola) or 

PARACUB (cubic parabola);  direction of the curve: NING (straight stretch), IZDA (curve to 

the left) or DCHA (curve to the right); position of the bogie at the curve: NING (straight stretch), 

ENT (bogie entering the curve), SAL (bogie exiting the curve); curve radius (𝑅), cant (ℎ𝑟) and 

inclination (𝑖); and, finally, initial and final maximum speed allowed (𝑉𝑖𝑛 and 𝑉𝑓𝑛).  

In the supplementary material (Pellicer & Larrodé, 2024), the 333 stretches defined can be 

found. It can be noted that 200 – 800-m radii are the most frequent, and because ∞ is not 

accepted on EES, it is assimilated to 5 · 107. For more realism, the station 1 is called Albarque,

the station 2 is called Zacarín and there is even an intermediate station called Milbello (all of 

these are fictional names). The supplementary material also includes the introduction strategy 

of Hertz’s and Kalker’s coefficients into the analysis through polynomials and other equations. 

3 Results 

After executing the algorithm, the diameter – mileage curves are obtainer. Here, the diameter 

is expressed in [mm], whereas the distance traveled is in [km]. The results, shown in Figure 4, 

are briefly commented upon:  

1. 920-mm wheels can travel for 115,476 km until reaching an 840-mm, losing 2 mm in

diameter at every reprofiling cycle. However, if the train operator releases the 840-mm

wheel from the workshop, the distance traveled will be augmented to 119,551 km. At

that point, the worn-out profile will be discarded for safety and operational reasons.

2. 680-mm wheels are able to travel for 91,368 km until reaching their minimum allowed

diameter: 620 mm. This is the real life end for this wheel, yet the wear – reprofiling

cycles have been extended, as if the final diameter could be 600 mm for the difference

between 680 and 600 is the same as that of 920 and 840. In this fictional situation, the

wheel would have traveled 120,667 km (fictional life end).

3. 355-mm wheels are capable of traveling 35,311 km until reaching their minimum

allowed diameter: 335 mm. This is the real life end for this wheel, yet the wear –

reprofiling cycles have been extended, as if the final diameter could be 275 mm for the

different between 355 and 275 is the same as that of 920 and 840. In this fictional

situation, the wheel would have traveled 133,340 km (fictional life end).



Besides, a worn-out wheel profile after a random distance is obtained and represented with the 

coordinates 𝑧𝑝,𝑓 − 𝑦𝑝,𝑓 (𝑧𝑝,𝑓 is the vertical coordinate of the final profile, while 𝑦𝑝,𝑓 is the 

horizontal one). The profile shows that the flange wear is far more noticeable and significant 

than the almost-negligible tread wear (it is an aggressive type of contact and tight curves are 

predominant in the railway line defined). In fact, the algorithm determines that in most flange 

– rail contacts, RCF appears due to the high normal pressures and tangential stresses involved:

Figure 4. (a) Diameter – mileage curve for the 920-mm scenario; (b) Diameter – mileage curve 

for the 680-mm scenario; (c) Diameter – mileage curve for the 355-mm scenario; (d) 

Representation of a worn-out wheel profile after a random distance traveled.  

4 Conclusions 

The algorithm constructed interconnects some calculation models by other authors, all of which 

exhibit good accuracy – computational effort ratios. Moreover, it allows taking into account the 

main factors impacting wheel wear, some of which are associated with the vehicle (wheel and 

wagon factors), while others are associated with the superstructure. By introducing boundary 

conditions and hypothesis complementing those of the calculation models used, the algorithm 

enables computing the wear with a parametric variation (diameter variation, among others).  

In the case presented, wheel wear computations have been utilized for the obtention of diameter 

– mileage curves for several scenarios: 920-mm diameter wheels used on the Y – 25 bogie, 680-

mm diameter wheels used on the Saas-z 702 bogie and 355-mm diameter wheels used on the

Graz Pauker 702 bogie. According to the results, smaller wheels can travel shorter than bigger

Real life end 

Fictional life end 

Fictional life end 

Real life end 

(a) (b) 

(c) (d)



wheels as it was expected. However, this is due to the limit of reprofiling cycles and, as it has 

been discussed, if all of the wheels could undergo the same number of reprofiling cycles, then 

680-mm diameter wheels could travel longer than 920-mm diameter wheels and 355-mm

wheels could travel longer than its bigger counterparts. Despite being unexpected, the

comprehension of wheel, wheelset and bogie kinematics and dynamics which this work has

enabled, allows finding the root causes responsible for this behavior:

1. Regarding kinematics, reduced-diameter wheels negotiate curves more smoothly than

ordinary-diameter wheels, as their uncentering is lower, so their flanges touch the rails

less frequently (the threshold radius is lower as well).

2. Regarding dynamics, flange – rail contact is softer. When reduced-diameter wheels’

flanges touch the rails, they do it less intensely (uncentering forces are not so intense).

Also, the force exerted by the rails on the flange is lower because the bogies based on

reduced-diameter wheels are less loaded, so the force and torque balances lead to lower

rail – flange forces.

Finally, as a continuation of this research work, the variation of other parameters different to 

wheel diameter could be implemented in order to develop sensitivity analyses with the goals of 

optimization or finding and explaining trends.   
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Annex 1 

Table A1. Latin-symbol abbreviations. 
A    v      D fi      U     I  A    v      D fi      U     I  

𝑎 Longitudinal semi-axis of Hertz’s ellipse m 𝑛𝑑𝑒𝑐 Degree of the function deceleration - time ∅ 

𝑎𝑙𝑎𝑡 
Lateral acceleration experienced by the vehi-

cle 
m · s−2 𝑛𝑒𝑗𝑒𝑠 Number of axles on the vehicle ∅ 

𝐴 Relative longitudinal curvature m−1 𝑛𝑒𝑗𝑒𝑠
′ Number of axles on the bogie ∅ 

𝐴𝑐 Hertz’s ellipse area m2 𝑛𝐻 Lateral Hertz’s coefficient ∅ 

𝐴𝑓 
Ratio between the minimum friction coeffi-

cient (infinite slip speed) and the maximum 

(null slip) 

∅ 𝑁𝑏𝑟| 𝑁𝑝 

Reaction force of the rail on the wheel in the nor-

mal direction to the contact area at the (tread 

flange) at a wheel experiencing flange – rail con-

tact   

N 

Lateral semi-axis of Hertz’s ellipse m 𝑁𝑒| 𝑁𝑖 
Normal force acting on the (external| internal) 

wheel to the curve 
N 

 𝑖|  𝑒 

Distance from track center to the rolling ra-

dius of the (internal| external) wheel to the 

curve 

m 𝑁𝑟| 𝑁𝑡 

Normal force component in the radial |tangential 

direction (the tangential one is perpendicular to 

the radial one) 

N 

𝑜 Distance from track center to rolling radius m 𝑁⊥| 𝑁∥ 
Normal force component acting on the wheel 

(perpendicularly| tangentially) to contact area 
N 

𝐵 Relative lateral curvature m−1 𝑜 

Existing offset between the track gauge minus the 

flange – rail play and the distance between the 

nominal radius center of the wheelset wheels  

m 

𝐵𝑓 Exponential constant at friction law s · m−1 𝑝 𝑜  Maximum contact normal pressure  Pa 

𝑐 Effective size of contact patch m 𝑄𝑖| 𝑄𝑓 Initial | final metric point m 

𝐶 Contact tangential stiffness N · m− 𝑟𝑒| 𝑟𝑖 
Theorical rolling radius of the (external| internal) 

wheel to the curve 
m 

𝐶𝑆 
Contact tangential stiffness for the pure spin 

case 
N · m− 𝑟𝑒

∗| 𝑟𝑖
∗

Rolling radius of the (external| internal) wheel to 

the curve including the displacement due to the 

yaw angle 

m 

𝐶11|𝐶22|𝐶
Longitudinal| lateral| vertical Kalker’s coeffi-

cient 
∅ 𝑟𝑜 Nominal rolling radius m 

𝐶11
′ | 𝐶22

′  

Kalker’s coefficient (longitudinal |lateral) cor-

rected according to non-dimensional slip 

components 

∅ 𝑟𝑝 
Wheel radius measured until the flange contact 

patch 
m 



𝐶2 | 𝐶 2 Kalker’s coefficients on 𝑦𝑐𝑧𝑐 plane ∅ 𝑟𝑟𝑟 Real rolling radius m 

𝐷 Nominal wheel diameter m−2 𝑟𝐻 Vertical Hertz’s coefficient ∅ 

𝑒 
Total bogie span (measured from its leading 

to its leading wheelset) 
m− 𝑅 

Curve radius (measured from its center to the 

track axis) 
m 

𝐸 
Equivalent Young’s modulus of the materials 

in contact  
m 𝑅𝑥1

 Rail lateral radius m 

𝐸1| 𝐸2 Young’s modulus of the rail | wheel m 𝑅𝑥2
 Wheel lateral radius m 

𝐹 Magnitude of tangential force vector 𝑅𝑦1
 Rail longitudinal radius m 

𝐹𝑓 Braking force Pa 𝑅𝑦2
 Longitudinal wheel radius  m 

𝐹𝑡 Traction force Pa 𝑠 Magnitude of non-dimensional slip vector ∅ 

𝐹𝑥| 𝐹𝑦 Longitudinal |lateral tangential force m 𝑠𝑥| 𝑠𝑦 Longitudinal| lateral non-dimensional slip ∅ 

𝐹𝑥
′| 𝐹𝑦

′ 
Longitudinal |lateral tangential force trans-

lated to the reference frame 𝓊̅𝓋̅𝓌̅ 
N 𝑠𝐶  

Magnitude of non-dimensional slip corrected 

with the spin contribution  
∅ 

𝐹𝑦,𝐶  
Lateral tangential force (lateral force) cor-

rected with the spin contribution 
N 𝑠𝑦,𝐶 

Lateral non-dimensional slip corrected with the 

spin contribution 
∅ 

𝐹𝑦,𝑆 Increase in lateral force due to spin N 𝑇𝛾/𝐴𝑐 Wear index for the USFD law N · m−2 

𝐹𝑚á𝑥,𝑅𝐶𝐹 
Maximum tangential force before rolling con-

tact fatigue appears 
N 𝓊𝑓 

Coordinate in the 𝓊̅ axis of the wheel contact 

area, in the reference frame 𝓊̅𝓋̅𝓌̅ 
m 

𝐹𝐼𝑠𝑢𝑟𝑓 Fatigue index N 𝓊𝑓𝑙 
Coordinate in the 𝓊̅ axis of the flange outer part, 

in the frame 𝓊̅𝓋̅𝓌̅ 
m 

𝑔 Gravity acceleration N 𝓋𝑓 
Coordinate in the 𝓋̅ axis of the wheel contact 

area, in the frame 𝓊̅𝓋̅𝓌̅ 
m 

𝐺 
Equivalent shear modulus of the materials in 

contact 
N 𝓋𝑓𝑙 

Coordinate in the 𝓋̅ axis of the flange outer part, 

in the frame 𝓊̅𝓋̅𝓌̅ 
m 

𝐺1| 𝐺2 Shear module of the rail | wheel  N 𝑣𝑥| 𝑣𝑦 Longitudinal| lateral creepage ∅ 

ℎ𝑟 Real cant of the railway line ∅ 𝑉 Vehicle speed m · s−1 

𝐻𝐶𝑑𝐺 
Center of gravity of 𝜆𝑒𝑗𝑒 height over the roll-

ing plane 
m · s−2 𝑉𝑓| 𝑉𝑖  Final |initial vehicle speed m · s−1 

𝐻𝑡𝑎𝑟𝑎 
Center of gravity of 𝜆𝑡𝑎𝑟𝑎 height over the roll-

ing plane 
Pa 𝑤𝑥| 𝑤𝑦 Longitudinal| lateral slip speed m · s−1 

𝐻𝑢 
Center of gravity of 𝜆𝑢 height over the rolling 

plane 
Pa 𝑅,𝑈𝑆𝐹𝐷 Wear rate (USFD law) 

kg · m−1

· m−2

𝐻𝑈𝑆𝐹𝐷 Total wheel wear depth (USFD law) m 𝑦 Wheelset uncentering m 

𝑖 Railway line gradient / slope m 𝑦∗ Total wheelset uncentering m 

𝐽 Track gauge m 𝑦𝑙í𝑚
∗ Available play for the bogie leading wheelset 

when it uncenters towards the outside of a curve 
m 

𝑘 Wheel semi-conicity or inclination  m 𝑦𝑙í𝑚,𝑑𝑖𝑎𝑔
∗  

Available play for the bogie trailing wheelset 

when it uncenters towards the inside of a curve 
m 

𝑘𝐴| 𝑘𝑆 
Reduction coefficient for the initial slope of 

the traction curve at the stick | slip region 
m 𝑦̇ Wheelset uncentering rate m · s−1 

𝐾𝑀 Auxiliary coefficient for the calculation of 𝐹𝑦,𝑆 ‰ 𝑦̇∗ Total wheelset uncentering rate m · s−1 

𝑚𝐻 Longitudinal Hertz’s coefficient kg · m2 𝑍𝑤 Number of wheels on the bogie ∅ 

Spin torque N 

Table A2. Greek-symbol abbreviations. 
A    v      D fi      U     I  A    v      D fi      U     I  

𝛼𝑓𝑛 
Fraction of the force normal to the wheel fall-

ing on the flange contact patch 
∅ 𝜇𝑜 

Initial friction coefficient or maximum (null slip 

speed) 
∅ 

𝛽𝑟𝑝 Gradient angle rad 𝜈 
Equivalent Poisson’s ratio of the materials in con-

tact 
∅ 

𝛾𝑜 Wheel contact angle rad 𝜈1| 𝜈2 Poisson’s ratio of the rail | wheel ∅ 

𝛿𝑜 
Maximum indentation between the two bod-

ies in contact 
m 𝜉 Gauge widening (at tight curves) m 



𝛿𝑃 
Auxiliary coefficient for the obtention of coef-

ficient 𝐾𝑀 
∅ 𝜌 Density of the wheel material  kg · m−

𝜀 Tangential stress gradient at the stick region ∅ 𝜍 
Longitudinal displacement angle of the contact 

patch 
rad 

𝜀𝑆 
Tangential stress gradient at the stick region 

for the pure spin case 
∅ 𝜏𝑙í𝑚 Tangential yield stress of the wheel material Pa 

𝜂 Play between the flange and the rail  m Tilt angle rad 

𝜃 Hertz’s angle rad  ̇ Variation angle of tilt angle  rad · s−1 

𝜗𝑟 Real cant angle rad Spin (rotational creepage) rad · m−1 

𝜆𝑒𝑗𝑒 Axle load kg 𝜓 Yaw angle rad 

𝜆𝑡𝑎𝑟𝑎 Vehicle tare kg 𝜓̇ Variation rate of yaw angle rad · s−1 

𝜆𝑢 Payload transported by the vehicle kg 𝜔′ Angular slip speed when braking per unit length 
rad · s−1 ·
· m−1 

𝜇 
Dynamic friction coefficient (or adhesion co-

efficient) 
∅ 

Table A3. Input values common to the three scenarios (920, 680 and 355-mm wheels). 

                                          

𝐴𝑓 (∅) 0.400 𝑘 (𝑓𝑙𝑎𝑛𝑔𝑒) (∅) 1.235 – 2.747 𝛾𝑜 (𝑡𝑟𝑒𝑎𝑑) (º) 1.432 

𝐵𝑓 (s/m) 0.600 𝑘𝐴 (∅) 1 𝛾𝑜 (𝑡𝑟𝑒𝑎𝑑
′) (º) 1.432 

𝑒 (m) 1.800 𝑘𝑆 (∅) 0.400 𝛾𝑜 (𝑃) (º) 51 – 70  

𝐸1 (Pa) 2.100 · 1011 𝑅𝑥1 (𝑡𝑟𝑒𝑎𝑑) (m) 300 · 10− 𝜂 (m) 0.007 

𝐸2 (Pa) 2.100 · 1011 𝑅𝑥1
(𝑡𝑟𝑒𝑎𝑑′) (m) 80 · 10− 𝜆𝑡𝑎𝑟𝑎 (kg) 20,000 

𝑔 (m·s-2) 9.810 𝑅𝑥1
(𝑓𝑙𝑎𝑛𝑔𝑒) (m) 13 · 10− 𝜇 (∅) 0,400 

𝐺1 (Pa) 81.712 · 109 𝑅𝑥2
 (𝑡𝑟𝑒𝑎𝑑) (m) 5 · 107 𝜇𝑜 (∅) 0.550 

𝐺2 (Pa) 81.712 · 109 𝑅𝑥2 (𝑡𝑟𝑒𝑎𝑑
′) (m) 5 · 107 𝜈1 (∅) 0.285 

𝐻𝑡𝑎𝑟𝑎 (m) 0.512 𝑅𝑥2 (𝑓𝑙𝑎𝑛𝑔𝑒) (m) (13 𝑜𝑟 20) · 10− 𝜈2 (∅) 0.285 

𝐻𝐶𝑑𝐺  (m) 1.573 𝑛𝑑𝑒𝑐  (∅) 0 𝜌 (kg·m-3) 7,850 

𝐽 (m) 1.668 𝑜 (m) 0.075 𝜏𝑙í𝑚 (Pa) 3.120 · 108 

𝑘 (𝑡𝑟𝑒𝑎𝑑) (∅) 0.025 𝑤𝑤 (m)  0.140 

𝑘 (𝑡𝑟𝑒𝑎𝑑′) (∅) 0.025 𝛼𝑓𝑛 (∅) 0.750 

Notes: (1) Tread’ is the tread of the wheel opposed to the wheel experiencing flange – rail 

contact. (2) Some values are expressed as ranges since flange – rail contact geometry varies at 

every contact. (3) 5 · 107 means that the value tends to infinity (∞ is not accepted on EES).

Table A4. Specific input values for each of the three scenarios. 

        
          920-         

        

          680-         

        

          355-         

        

𝐷 (m) 0.920 0.680  0.355 

𝑛𝑒𝑗𝑒𝑠 (∅) 4 4 8 

𝑟𝑝 (m) 0.467 – 0.475 0.347 – 0.355 0.185 – 0.193 

𝜆𝑒𝑗𝑒 (kg) 18,784 15,325 6,996 


