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1 Introduction

We present an algorithm for computing the matrix exponential exp(A) within a specified tolerance
tol, given a matrix A of size m × m. First, the algorithm computes a bound, θ, to the norm of
the matrix, i.e., ∥A∥ < θ, and then, according to θ, it chooses the scheme among a list of selected
methods which provides an approximation to exp(A) within such tolerance. If no matching scheme

is found, the algorithm employs scaling and squaring to find the cheapest method matching ∥A∥
2s < θ.

Different schemes for approximating the matrix exponential should be selected based on the specific
problem at hand.

As an example of numerical methods where such adaptivity is beneficial, consider exponential
integrators for solving differential equations. They have been shown to be very useful for a signifi-
cant number of problems [10]. For instance, most Lie-group methods (see also [12] for a review) like
Magnus integrators (see [3] and references therein), Crouch–Grossman methods [5], Runge–Kutta–
Munthe-Kaas methods [13], etc. require the calculation of one or several matrix exponentials per
step. In most cases, it suffices to approximate each matrix exponential only up to a given tolerance
lower than the round-off accuracy. When the Lie-group structure must be preserved, it is also
possible to provide cheaper approximations to the exponential while still preserving the structure.

2 Methodology

The goal of this work is to construct an algorithm that, when provided with a matrix A ∈ CN×N

and a tolerance tol, computes a function wα(A), where α refers to a label to identify the method,
capable of approximating the matrix exponential eA so that

relerr :=
∥wα(A)− eA∥1

∥eA∥1
< tol · ∥A∥1. (1)

Although there are various for the function wα(A), we analyse an extensive set of methods from
two families:
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• Taylor polynomials: wα(A) = tm(A), where tm(x) =
∑m

n=0
xn

n! , x ∈ C, and |tm(x) − ex| =
O(xm+1).

• Rational Padé approximants: wα(A) = rk,m(A), where rk,m(x) = pk,m(x)/qk,m(x) with

pk,m(x) =

k∑
j=0

(k +m− j)!k!

(k +m)!(k − j)!

xj

j!
, qk,m(x) =

m∑
j=0

(k +m− j)!m!

(k +m)!(m− j)!

(−x)j

j!
, (2)

which is an approximation of order s = k +m with the leading error term given [11, 7] by

ex − rk,m(x) = (−1)m
k!m!

(k +m)!(k +m+ 1)!
xk+m+1 +O(xk+m+2). (3)

Notice that the Taylor polynomial is a special case of Padé approximant, ts(x) = rs,0(x), and
has a larger leading error than rk,m(x) with s = k +m, k,m > 0. However, the performance
of a method strongly depends on the computational cost2 and it should also be considered.

Taking into account their computational cost, we select a list of methods which our algorithm uses
according to the provided matrix A and the tolerance tol.

Among all possible choices, one should use the method that provides the desired accuracy at
the lowest computational cost, and this requires to carry the following analysis:

Backward error. Given a particular method wα, we look for an associated scalar function for that
method, say θα(y), such that, given a matrix A and a positive integer number, s, such that
if ∥A∥1 ≤ 2sθα(tol), the method provides an approximation with a relative error below the
tolerance when used with s squarings. Forward and backward error analysis are frequently
used in the literature, and we will consider the backward error analysis in this work, similarly
to the analysis carried out in [6, 9] and implemented in the function (expm) in MATLAB.

Computational cost. For the analysis of the cost we assume that one dense matrix–matrix mul-
tiplication cost is C := 1, which we will take as the reference cost. We will say that the
cost of a method is kC ≡ k if its computational cost is approximately k times the cost of
a matrix–matrix product. Then, given two matrices A and B, the cost to compute A−1 or
A−1B will be taken as 4

3C.

Computational cost is less straightforward. Over the past few decades, the most effective
approach for addressing a specific issue has evolved, with advancements in reducing algo-
rithmic costs (a trend that is expected to persist with the emergence of novel algorithms
and computer designs). For example, Taylor methods were originally discarded since, when
computed with the standard Horner’s algorithm, they require m − 1 products to compute
tm. However, tm with m = 2, 4, 6, 9, 16, 20 can be computed with k = 1, 2, 3, 4, 5, 6 products,
respectively, a significant saving which made the Taylor methods competitive [14, 16]. In
addition, in [1, 2, 17] it is shown that further reduction can be carried out such that the
Taylor polynomial with m = 2, 4, 8, 12, 18 can be computed with k = 1, 2, 3, 4, 5 products,
respectively, making them the methods of choice for many problems.

On the other hand, diagonal Padé methods have the property that qm,m(x) = pm,m(−x), and
this symmetry allows finding a procedure to compute both polynomials pm,m(x) and qm,m(x)
simultaneously at a reduced cost for m = 1, 2, 3, 5, 7, 9, 13 with k = 0, 1, 2, 3, 4, 5, 6 products,
respectively, in addition to one inverse to compute rm,m. In [6] it is claimed that, since rm,m

can be computed with the same cost as rk,m or rm,k with k < m and provide higher accuracy

2In some cases round off accuracy must be taken into account.
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(see eq. (3)), only diagonal Padé methods are considered. However, in [15] it is shown that
this is not necessarily the case, showing that a number of approximants rk,m, with k > m
and with an appropriate fractional decomposition, can be computed at the same cost as rm,m

while providing higher accuracy.

Avoiding complex coefficients. In this work, we decompose some rational Padé methods into
simpler fractions, avoiding schemes with complex coefficients. Our goal is to propose methods
optimized for real matrices yet efficient for complex matrices, favoring real coefficients.

Lie group methods. If A belongs to a Lie algebra, then exp(A) belongs to the associated Lie
group. Our algorithm facilitates computing the exponential using only diagonal Padé ap-
proximants, preserving this property to round-off accuracy if necessary.

2.1 Selected methods sorted by computational cost

We collect now the list of the cost-efficient methods wα we have found, sorted by their computa-
tional cost kα. We give the structure of the schemes with appropriate values for the coefficients
αi, βi, . . . , i = 1, 2, . . . , which take different values in each case.

k = 1 product t2(x) = 1 + x+ 1
2x

2.

k = 11
3 product r2,1(x) = p0(x) +

p1(x)
p2(x)

, pi(x) = αi + βix with p0(0) = 0, α2 = 1.

k = 2 products t4(x) = 1 + x+ x2( 1
2! +

1
3!x+ 1

4!x
2).

k = 21
3 products r4,2(x) = p0(x) +

p1(x)
p2(x)

, pi(x) = αi + βix+ γix
2, α0 = 0, α2 = 1.

k = 3 products t8(x).

k = 31
3 products r6,3(x) = p0(x) +

p1(x)
p2(x)

, pi(x) = αi + βix+ γix
2 + δix

3 with α0 = 0, α2 = 1.

k = 32
3 products r6,4(x) = p0(x) +

p1(x)
p2(x)

+ p3(x)
p4(x)

, pi(x) = αi + βix + γix
2 with α0 = 0 and

p1(0)
p2(0)

= p3(0)
p4(0)

= 1
2 , α2 = α4 = 1.

k = 4 products t12(x) and t
[16]
15 (x).

k = 41
3 products r8,4(x) = p0(x)+

p1(x)
p2(x)

, pi(x) = αi+βix+γix
2+δix

3+σix
4 with α0 = 0, α2 = 1.

k = 42
3 products r8,5(x) = p0(x) +

p1(x)
p2(x)

+ q1(x)
q2(x)

, pi(x) = αi + βix + γix
2 + δix

3, qi(x) = α̃i +

β̃ix+ γ̃ix
2 + δ̃ix

3 with α0 = 0 and p1(0)
p2(0)

= q1(0)
q2(0)

= 1
2 .

k = 5 products t18(x) and t
[24]
21 (x).

k = 51
3 products r10,5(x) = p0(x) +

p1(x)
p2(x)

, pi(x) = αi + βix + γix
2 + δix

3 + σix
4 + µix

5, α0 =
0, α2 = 1. This method is not used because for all the considered tolerance values its θs are
less than the corresponding ones of (r8,4(x))

2.

k = 52
3 products r12,8(x) = p0(x) +

p1(x)
p2(x)

+ p3(x)
p4(x)

, pi(x) = αi + βix + γix
2 + δix

3 + σix
4 with

α0 = 0 and p1(0)
p2(0)

= p3(0)
p4(0)

= 1
2 , α2 = α4 = 1. Unfortunately, in general it suffers from round-off

errors, although smaller than those of r16,12(x). However for lower tolerance values it can
compete with r8,4(x) and r8,5(x).
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k = 7 products r16,12(x) = p0(x)+
p1(x)
p2(x)

+ p3(x)
p4(x)

+ p5(x)
p6(x)

, pi(x) = αi+βix+γix
2+δix

3+σix
4. This

scheme would be the method of choice when very high accuracy is desired and the scaling has
to be used. Unfortunately, for all choices in the free parameters of the method that we have
tried, it suffers severe round-off errors and this scheme is under investigation at this moment
and not used in the algorithm.

k = 71
3 products r13,13(x).

2.2 Adaptive scheme selection

Taking into account the considerations above, our experimental implementation uses the following
algorithm to select a method when provided a matrix, a tolerance value, and Table 1 (ordered by
tolerance and method cost in ascending order):

1. Calculate m = ⌊log10(tol)⌋, where ⌊·⌋ denotes the rounding-down operation.

2. Select the column with θα corresponding to the condition 10m < tol.

3. For each θα calculate the corresponding scaling sα = max
{
0,
⌈
log2

∥A∥1
θα(10m)

⌉}
, where ⌈·⌉

denotes the rounding-up operation.

4. For each method wα with the cost kα (provided in the list above) calculate the total cost
kα + 1.1 · sα. To break ties, methods that need scaling are penalized by multiplying sα by
the factor of 1.1.

5. Select the method with the lowest total cost.

2.3 Numerical performance

In the numerical experiments we show the behavior of the proposed algorithm and the individual
schemes that comprise it.

Consider a random diagonally dominant matrix A = D + R, A ∈ R101×101, such that D =
diag(−50,−49, . . . , 50) and the elements of R are sampled uniformly from [−1; 1], and the matrix
is normalized (i.e. A := A/∥A∥1).

Then, for every norm–tolerance pair in h = 10m, m = −3,−2, . . . , 2 and tol = 10−k, k =
0, 1, . . . , 16 the algorithm returns wα(hA) and the corresponding computational cost in terms of
matrix–matrix products, C. For each norm h, we calculate the normalized relative error

∥wα(hA)− ehA∥1
∥A∥1 · ∥ehA∥1

, (4)

where the reference ehA is computed numerically in arbitrary arithmetic, obtaining error–cost pairs.
Then in Figure 1, we plot these pairs alongside with the theoretical estimates from Table 1.

In Figure 1 one can see that the average error of superdiagonal methods from Table 1 is below
the tolerance predicted by the backward error analysis. The only exception is r12,8(x) for low
tolerance, where r13,13(x) should be preferred.

The results that one would obtain using the schemes from the current numerical software are
included for comparison as vertical dotted lines, which correspond to unchanging approximation to
the round-off error. The specific scheme used by the algorithm is annotated above the error line.
More specifically, if we take m = −1, i.e. ∥A∥1 ≤ 0.1, one of six methods seen in the Figure 1 will
be used, while r5,5 would be used at a higher cost in MATLAB or Julia.

Similar results can be observed for in the case of diagonal Padé methods that preserve the Lie
group properties.
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Table 1: Comparison of backward errors of superdiagonal methods. The asterisk (∗) stands for
methods with no cost estimate. Grayed-out rows and columns are provided for completeness.

Cost Method
Tolerance

2−11 10−4 2−24 10−8 10−12 2−53 10−16

1 t2 5.31e−2 2.43e−2 5.98e−4 2.45e−4 2.45e−6 2.58e−8 2.45e−8

1 1
3 r2,1 3.18e−1 1.90e−1 1.62e−2 8.96e−3 4.16e−4 2.00e−5 1.93e−5

2 t4 4.48e−1 3.10e−1 5.12e−2 3.29e−2 3.31e−3 3.40e−4 3.31e−4

2 1
3 r4,2 1.66 1.30 3.98e−1 2.97e−1 6.48e−2 1.42e−2 1.40e−2

3 t8 1.59 1.35 5.80e−1 4.70e−1 1.54e−1 4.99e−2 4.93e−2

3 1
3 r6,3 3.28 2.81 1.31 1.09 4.01e−1 1.47e−1 1.45e−1

3 2
3 r6,4 4.10 3.57 1.79 1.51 6.12e−1 2.48e−1 2.46e−1

4 t12 2.79 2.50 1.46 1.28 6.24e−1 3.00e−1 2.97e−1

∗ t15 3.68 3.38 2.22 2.00 1.14 6.41e−1 6.37e−1

4 t
[16]
15 3.91 3.59 2.35 2.11 1.20 4.92e−1 4.63e−1

4 1
3 r8,4 4.95 4.43 2.55 2.22 1.07 5.07e−1 5.03e−1

4 2
3 r8,5 5.83 5.25 3.14 2.76 1.40 7.05e−1 6.99e−1

5 t18 4.57 4.26 3.01 2.76 1.75 1.09 1.08

∗ t21 5.45 5.13 3.82 3.56 2.42 1.62 1.62

5 t
[24]
21 5.62 5.29 3.95 3.67 2.50 4.54e−1 4.21e−1

5 1
3 r10,5 6.64 6.08 3.95 3.54 2.00 1.11 1.10

5 2
3 r12,8 1.02e1 9.54 6.91 6.37 4.16 2.69 2.68

7 r16,12 1.55e1 1.48e1 1.18e1 1.12e1 8.27 6.09 6.07

7 1
3 r13,13 1.53e1 1.45e1 1.12e1 1.06e1 7.55 5.37 5.35
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Figure 1: Comparison of tolerance (dashed) and practical average cost plotted vs. total compu-
tational cost of superdiagonal methods. The thin vertical dotted line represents the cost in the
current software that implements [7]. Note that the distance between the dotted vertical line and
the solid one represents cost savings.
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3 Conclusions

We introduce a novel algorithm for approximating the matrix exponential function with adjustable
tolerance, offering reduced computational costs compared to conventional methods across a broad
spectrum of matrices. This algorithm readily accommodates customization, allowing for the ex-
clusive use of Taylor methods (i.e., matrix-matrix products without inverses) in scenarios where
products are significantly more economical than inverses, or the exclusive use of diagonal Padé
approximants to maintain Lie group structure.

Furthermore, we have decomposed several Padé approximants into lower-degree fractions, facil-
itating independent computation and rendering them amenable to parallelization. We will conduct
an in-depth investigation into parallel computation strategies for matrix exponential evaluation
following the approach outlined in [4].
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