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1 Introduction

Some diseases, such as the salmonella and the brucellosis, are transmitted by contact of the suscep-
tible individuals with the bacteria in the environment. To model this kind of diseases it is necessary
to consider as state variables the susceptible individuals, S(t), the infected ones, I(t), and the con-
taminant, C(t). Moreover, it is usually considered that the size of the population, P = S(t) + I(t),
remains constant for all t ≥ 0, with the replacement of dead individuals represented in the model
by µ(t)P , for µ(t) ≥ 0. In such a way, the following discrete time system can be constructed

S(t + 1) = pS(t) − σC(t)S(t) + µ(t)P
I(t+ 1) = qI(t) + σC(t)S(t) (1)

C(t+ 1) = sC(t) + βI(t), t ≥ 0;

where σ > 0 represents the exposition rate of susceptible individuals, 0 < p, q < 1 are the survival
rates of the susceptible and infected population, respectively, and 0 < s < 1 is the survival rate of
the bacteria. Moreover, β ≥ 0 represents the amount of contaminant or bacteria produced by each
infected individual. This model is called an indirect transmission epidemic model and it is denoted
by SIC from the name of the variables.

It is well known that the Basic Reproduction Number, R0, of the model is a quantity that
allows to determine the stability of the system to the disease-free equilibrium point. If R0 < 1, the
disease disappears and otherwise it remains [1]. In the unstable case different control strategies
can be considered in order to eliminate or mitigate the spread of the disease[2, 3].

The main goal of this work is to analyze a control strategy based on a medical treatment on the
infected individuals. We will consider a medicine that decreases the amount of bacteria produced
by infected individuals. Under this consideration, we construct a new model and study different
conditions for the parameters to achieve that the Basic Reproduction Number of the new model
is less than one. We analyze the significance of the treatment effectiveness and the percentage of
individuals who are treated. Finally, we show an optimal control problem for the percentage of
treated infected individuals.

2 Control strategy

In this work, we apply a specific treatment to a percentag m of the infected individuals, where
0 < m < q, and this treatment decreases the production of bacteria in this individuals. The
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effectiveness of this medicine is given by the parameter 0 < ϵ < 1. So, we consider the infected
individuals grouped in two new state variables: without medical treatment I1(t), and with medical
treatment I2(t), that is I(t) = I1(t) + I2(t). Under these considerations the new model can be
written, for t ≥ 0, as

S(t+ 1) = pS(t)− σC(t)S(t) + µ(t)P

I1(t+ 1) = qI1(t) + σC(t)S(t)−mI1(t) (2)

I2(t+ 1) = qI2(t) +mI1(t)

C(t+ 1) = sC(t) + βI1(t) + (1− ϵ)βI2(t).

As we have mentioned above, the population remains constant at any time, this implies that
µ(t)P = (q − p)S(t) + (1− q)P and S(t) = P − I1(t)− I2(t) for any t ≥ 0. From this, the system
can be reduced to

I1(t+ 1) = qI1(t) + σC(t)(P − I1(t)− I2(t))−mI1(t)

I2(t+ 1) = qI2(t) +mI1(t) (3)

C(t+ 1) = sC(t) + βI1(t) + (1− ϵ)βI2(t).

for t ≥ 0. The lineararization of this system around the disease-free equilibrium point is given by I1(t+ 1)
I2(t+ 1)
C(t+ 1)

 =

 q −m 0 σP
m q 0
β (1− ϵ)β s

 I1(t)
I2(t)
C(t)

 . (4)

In order to study the stability of the system, the state matrix can be decomposed as

E =

 q −m 0 σP
m q 0
β (1− ϵ)β s

 =

 q −m 0 0
m q 0
0 0 s

+

 0 0 σP
0 0 0
β (1− ϵ)β 0

 = T + F, (5)

and the Basic Reproduction Number is given by the spectral radius of the matrix F (I − T )−1 and
will be denoted by R0(m,α) = ρ(F (I − T )−1). A direct calculation leads to

R2
0(m,α) =

σβP

(1− q)(1− s)

(
1− ϵ m

1− q +m

)
.

Clearly this Basic Reproduction Number is related to the corresponding one for the system

without treatment, R0, which has the form R2
0 =

σβP

(1− q)(1− s)
as it is given in [3] and references

given therein.
Starting from an unstable system without medication, R0 > 1, we have that the system with

the treatment will be stable if

R2
0(m,α) = R2

0

(
1− ϵ m

1− q +m

)
< 1 ⇐⇒ m

(
1− 1

R2
0

− ϵ

)
< (1− q)

(
1

R2
0

− 1

)
.

Imposing ϵ > 1 − 1

R2
0

, we obtain R2
0(m,α) < 1 ⇐⇒ m >

(1− q)(R2
0 − 1)

1− (1− ϵ)R2
0

. Moreover, the

hypothesis condition m < q holds under this assumption.
The previous reasonign can be summarized in the following Proposition.

Proposition 1 Let us consider the unstable SIC epidemic model given in (1) with R0 > 1 and the

medical treatment model given in (2). If the effectiveness ϵ satisfies ϵ > 1− 1

R2
0

, then it is sufficient

to apply the treatment to a percentage of infected individuals m >
(1− q)(R2

0 − 1)

1− (1− ϵ)R2
0

to ensure the

stability of the medical treatment model to the disease-free equilibrium point.



Modelling for Engineering & Human Behaviour 2024

3 The optimal control problem

An optimal control problem involves adjusting the controls in a dynamic model so that we achieve
a predetermined objective. The first thing we will have to do is to determine the type of controls
we will use and the range where this controls can be chosen. Next, the construction of the objective
function is an important issue since the optimal control results depend largely on its form. Gener-
ally, in the design of the objective function, the factors involved in the expression are weighted by
balance coefficients based on their relative importance. Once defined this objective function, we
assume that there is an optimal control and we compute it depending on the conditions that the
control and the corresponding state variables have to meet.

In this section, we consider a medical treatment model where the percentage of infected indi-
viduals that are treated at time t is considered as a control variable u(t):

I1(t+ 1) = qI1(t) + σC(t)(P − I1(t)− I2(t))− u(t)I1(t)

I2(t+ 1) = qI2(t) + u(t)I1(t) (6)

C(t+ 1) = sC(t) + βI1(t) + (1− ϵ)βI2(t), t ≥ 0,

and we consider an objetive function of the form

J = y(T ) +
T−1∑
t=0

(
y(t) +

a

2
u2(t)

)
, (7)

where y(t) = c I1(t) + d I2(t) + e C(t), t = 0, . . . , T .

From some initial conditions, I1(0) = i10, I2(0) = i20 and C(0) = c0, and a final time T , our
goal is to find the control sequence {u(j), j = 0, 1, . . . , T −1} to optimize the objective function (7)
subject to the equations of the model (6). In order to do this, we apply the Pointryagin’s Maximum
Principle [4] and construct the Hamiltonian function Ht. For this problem, this function is defined
by

Ht = y(t) +
a

2
u2(t) + (qI1(t) + σC(t)(P − (1 + u(t))I1(t)− I2(t)))λ1(t+ 1)

+ (qI2(t) + u(t)I1(t))λ2(t+ 1) + (sC(t) + β(I1(t) + (1− ϵ)I2(t))λ3(t+ 1),

t = 0, . . . , T − 1.

(8)

Then, considering the system (6) and the initial conditions, i10, i20, and c0, the solution of the
control problem will be given by the solution of the following optimality condition

∂Ht

∂I1(t)
= λ1(t),

∂Ht

∂I2(t)
= λ2(t),

∂Ht

∂I3(t)
= λ3(t). (9)

∂Ht

∂u(t)
= a u(t)− I1(t)(λ1(t+ 1)− λ2(t+ 1)) = 0, (10)

and the conditions

0 =
∂Ht

∂λ1(t)
, 0 =

∂Ht

∂λ2(t)
, 0 =

∂Ht

∂λ3(t)
.

Moreover, since the control variable u(t) represents the percentage of infected individuals that
are treated, there are some constraints imposed by the biological sense of this variable. That is,
the sequence of optimal control has to satisfy that it is below the quantity

u⋆ = min

{
1,max

{
0,

I1(t)

a
(λ1(t+ 1)− λ2(t+ 1))

}}
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at any time.
However, to solve analytically the above equations is not a trivial problem in the sense that the

system must be solved using a progressive part and a regressive one. Furthermore, the number of
unknowns and the relations between them, imposed by the nature of the problem, make it difficult
to obtain an explicit expression of the solution. Therefore, we carry out a numerical simulation to
study the solution that provides us a good control.

4 Conclusions

Diseases due to indirect infections are closely related to the proliferation of bacteria or other
elements that occur in the environment. Any large-scale bacterial spread would be disastrous
due to the impact of epidemics on the health system and global economies. Our interest is to seek
resources to stop this production through a control strategy such as medical treatments that reduce
the production of bacteria. In this work, this strategy has been used to investigate under what
conditions it is possible to stop the proliferation of the disease. Furthermore, taking into account
the possible impact of the treatment, an optimal control problem has been presented that allows
us to improve this impact in the direction of interest.
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