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1 Introduction

Several authors have studied different problems of recovering some unknown information within
an electrical network using measured data such as voltage, power, or current. Some of these
problems arise in the context of real networks (see e.g., [1, 5, 6]), where the information about the
network is often incorrect or outdated. This information is crucial for monitoring and operating
the network, making it worthwhile to develop estimation methods based on measured data. This is
especially pertinent given the recent general improvement in the precision and availability of data
in real networks. Other network recovery problems have emerged as discrete approximations to
Calderón’s problem (see [2, 4] and references therein).

In this talk, we concentrate on the sparse network recovery problem as introduced in [10],
which involves reconstructing a sparse network topology and its associated cable parameters using
power and voltage data collected from all vertices. In Section 4 (Ibidem), an algorithm designed
to address this problem is introduced. First, we will briefly introduce the notation used in [10] to
clearly formulate the main problem.

We denote by Γ = (N,E,w) an electrical network, where (N,E) is an undirected, finite and
simple graph (called the “network topology”) with vertex set N and edge set E, and w is a vector
of weights at the edges E (the cable parameters of the network). In the case of an Direct Current

(DC) network, each edge is characterized by a real non-negative parameter, so w ∈ R|E|
≥0 , and

in the case of an Alternating Current (AC) network, each edge can be characterized by two real

non-negative parameters, so w ∈ R2|E|
≥0 .

We will denote as “state” of an AC network Γ a vector in R4n containing the real and imaginary
parts of the values of voltage and power injected at each vertex at a given time. In the case of
DC networks, voltage and power are real, so a state is a vector in R2n. Any state must satisfy the
“power flow equations”, derived from Kirchhoff’s and Ohm’s laws. They are quadratic in the state
variables and linear in the cable parameters of Γ.

Given a data set of states Ω which may have some errors, we define the fitting error rms(Γ,Ω) of
any network Γ as the root mean square of the vector of evaluations of all the power flow equations
of Γ at every element of Ω.
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Problem 1. [Main Problem] Given a set of nodes N , a data set of states Ω which may have
some errors, and a tolerance tol ∈ R, we seek to determine a network Γ = (N,E,w) such that
rms(Γ,Ω) ≤ tol, and Γ is “minimal” in the following sense. Given any electrical network
Γ′ = (N,E′, w′), we have that:

1. If E′ = E, then rms(Γ′,Ω) ≥ rms(Γ,Ω).

2. If E′ ⊊ E, then rms(Γ′,Ω) > tol.

It is shown in [10] that in many cases the problem of simultaneously recovering the topology
and cable parameters of an electrical network from power and voltage data at all vertices is ill-
posed. Even if the data comes from a sparse network without error, there may be dense networks
with zero fitting error. The formulation of the main problem is of significant interest from an
applied perspective because recovering a sparse network topology facilitates the efficient resolution
of operational challenges within electrical networks, such as power flow optimization.

In this presentation, we begin by reviewing the key theoretical results from [10], which provide
the foundation for the algorithm proposed to solve the main problem. We then delve into additional
findings related to this algorithm. Our discussion includes the consistency of the estimator for cable
parameters, assuming a fixed network topology and specific data distribution assumptions.

The algorithm in [10] employs a random iterative process, during which several network edges
may be eliminated in some iterations. In this talk, we demonstrate that as the number of iterations
approaches infinity, the algorithm is guaranteed to identify a minimal network with probability
one. Furthermore, we propose a stopping criterion for the algorithm, which is derived from the
analysis of a random walk on a graph. This criterion helps in determining the optimal point to
terminate the algorithm, ensuring efficiency while maintaining accuracy.

2 Methods

2.1 Algorithm of sparse network recovery

In this section, we will provide an overview of the primary techniques utilized in the algorithm
proposed in [10] for solving the main problem of sparse network recovery.

When considering a dataset of states Ω and a fixed network topology (N,E), the task of
determining a parameter vector w that minimizes the fitting error is equivalent to solving a Non-
Negative Least Squares (NNLS) problem, as outlined in more detail in [10, Section 3]. NNLS
problems are convex optimization problems [7], ensuring that every local minimum is also a global
minimum. Solutions to this problem can be obtained using interior point methods.

Adding or removing edges to a network whose parameters are all equal to zero does not change
the power flow equations, so the algorithm starts by finding a vector of parameters w with minimum
error with the complete graph as fixed topology. As the problem of parameter estimation with this
topology is usually ill-posed, w is usually dense, so no edges can be trivially removed from the
nertwork.

In order to remove edges of a DC network, we use the random procedure in [3] for spectral
graph sparsification, which is a notion introduced by Spielman and Teng in [9]. Given an electrical
network Γ and ε > 0, the procedure has a certain probability of obtaining an ε-approximation of
Γ, which is defined as follows.

Definition 1. For ε ≥ 0, we say that a DC network Γ′, with Laplacian matrix LΓ′ , is an ε-
approximation [8] of a DC network Γ, with Laplacian matrix LΓ, if they have the same vertex set
and for all z ∈ Rn:

1

1 + ε
zTLΓz ≤ zTLΓ′z ≤ (1 + ε)zTLΓz. (1)
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When addressing an AC network Γ, wherein each edge entails two parameters, we can depict
the network through two real weighted graphs, with each graph corresponding to one of the param-
eters. By independently applying the spectral sparsification procedure to each graph, there exists
a positive probability of obtaining an “ε-approximation” AC electrical network of Γ. This approx-
imation satisfies a property analogous to the one described in Definition 1. For a comprehensive
explanation, please refer to [10, Section 4].

The core theoretical results upon which the sparse network recovery algorithm is founded are
[10, Theorems 2 and 3]. These theorems assert that for a given dataset Ω, an electrical network Γ,
and a positive value ε, if Γ′ represents an ε-approximation of Γ, then the fitting error in Γ′, denoted
as rms(Γ′,Ω), does not surpass the previous error rms(Γ,Ω) by more than ε times a fixed quantity,
which solely depends on Γ and Ω.

The algorithm of sparse network recovery is [10, Algorithm 2]. Starting from a data set Ω,
a tolerance tol and an initial value of ε and a value ψ > 1, the algorithm starts by recovering
a network Γ with the complete graph topology. Then, it performs successive iterations. Each
iteration begins using the procedure in [3] for obtaining an ε-approximation of Γ. In the case the
procedure does not remove any edges, we increase the value of ε multiplying it by ψ and we finish
the iteration. By increasing the value of ε it becomes more likely that in the next iteration the
procedure in [3] removes some edges.

In the scenario where certain edges have been removed, we proceed to estimate the parameters
of the network based on the updated topology. If the error in the new network is either lower or
equal to the tolerance threshold tol , we then substitute Γ with this new network and conclude the
iteration. Conversely, if the error in the new network surpasses tol , we discard the network, reduce
the value of ε by dividing it by ψ, and conclude the iteration. By diminishing the value of ε, the
upper bound for the error, as provided by [10, Theorems 2 and 3], will subsequently decrease in
the subsequent ε-approximation.

2.2 Statistical consistency under fixed topology

From a statistical standpoint, the data obtained by the practitioner may be subject of some ran-
domness (e.g., measurement errors). In this talk, we also address this scenario. That is, assume
the observation of a sample (X,Y)[m] = (X1,Y1) . . . (Xm,Ym) of i.i.d. states

Xl =
(
el1, f

l
1, ..., e

l
n, f

l
n

)
)T and Yl =

(
P l
1, Q

l
1, ..., P

l
n, Q

l
n

)
)T l = 1, . . . ,m.

The empirical network, namely ŵ, is obtained as the solution the non-negative least-mean-square
minimization problem

ŵ ∈ argmin
1

m

m∑
l=1

||M(Xl)w −Yl||2

s.t. κ ≥ wk ≥ 0, for all k = 1, . . . , 2|E|.
(2)

where M(Xl) is the multivariate Vandermonde matrix of the data point Xl (see Section 3 in [10]
for further details). We will show that as the number of samples increases, ŵ converges almost
surely to a solution of the population problem

minimize E
(
||M(X)w −Y||2

)
s.t. κ ≥ wk ≥ 0, for all k = 1, . . . , 2|E|.

(3)

This provides statistical guarantees on the consistency of the empirical network towards the pop-
ulation one as the number of observations increases.
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2.3 Stopping criterion for the algorithm

Consider any iteration of the network recovery algorithm, in which the current network is Γ =
(N,E,w), with rms(Γ,Ω) < tol . The randomness of the spectral sparsification procedure in [3]
assures that every subgraph of (N,E) has a non-zero probability of being selected. Thus, when
the number of iterations of the algorithm increases, if there is any network Γ′ = (N,E′, w′) with
the property that E′ ⊊ E and rms(Γ′,Ω) ≤ tol , then the algorithm is guaranteed to converge to a
network with this property. This guarantees that when the number of iterations of the algorithm
goes to infinity, the algorithm converges to a minimal network.

Despite in several experiments the algorithm of sparse network recovery gives a minimal network
in few iterations, a stopping criteria for the algorithm has not been established before. Let ε0 be
the initial value of ε. The following points summarize the main steps of the algorithm that will
enable us to derive such a stopping criterion:

1. Throughout the algorithm ε can take values εk := ε0ψ
k, with k ∈ Z.

2. The probability of increasing the value of ε in the algorithm is equal to the probability of
having zero empty cells in a multinomial distribution of t = 8|N | · log(|N |)/ε2 samples with
|E| possible outcomes.

3. There exists an integer kmax ∈ Z such that for any integer k ≥ kmax, the probability of
increasing the value of ε for εk is zero. This occurs because t < |E|, ensuring that the
sparsification procedure is guaranteed to remove edges.

4. There exists an integer kmin ∈ Z such that for any integer k ≤ kmin + 1, according to
[10, Theorems 2 and 3], we are guaranteed that rms(Γ′,Ω) ≤ tol for any Γ′ that is an ε-
approximation of Γ. If during an iteration the value of ε is εkmin

and it must decrease, it
indicates that the sparsification procedure failed to produce an ε-approximation of Γ. This
means that this value is sufficiently low to ensure that we will obtain a network with an
acceptably low error if we obtain an ε-approximation of Γ with fewer edges than Γ in a
subsequent iteration. Hence, the algorithm is adjusted to increase the value of ε at the next
iteration.

Therefore, every iteration in the algorithm, until it reaches a new network with fewer edges
than the previous one and an error lower than the tolerance, can be viewed as a step in a random
walk within a finite directed graph. The set of nodes in this graph is {1, ..., s + 1}, where each
of the first s nodes represents one of the s distinct values that ε can assume, sorted in ascending
order. The last node, s+ 1, symbolizes the success in discovering a new network with the desired
property.

For any j, we denote by πj the probability of increasing the value of ε, and by δj the probability
of obtaining a new network when ε is equal to the j-th possible value it can assume, respectively.

The random walk represents a Markov chain without memory. The probability of transitioning
from state i to state j is determined by the (j, i)-th entry of the matrix:

0 1− π2 − δ2 0

1− δ1 0 1− π3 − δ3
...

π2 0
. . .

...

π3
. . . 1− πs−1 − δs−1

...
. . . 0 1− δs

...
πs−1 0 0

δ1 δ2 δ3 . . . δs−1 δs 1
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In the presentation, it will be observed that by monitoring the values taken by ε and under the
assumption that any of the δj is sufficiently large, a stopping criterion for the algorithm can be
established. This criterion determines a specific number of iterations beyond which there is a low
probability of encountering a new network that is sparser than the current one.
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[2] Araúz, C., Carmona, Á., Encinas, A. M., Mitjana, M., Recovering the conductances on grids: a
theoretical justification. In A panorama of mathematics: pure and applied. 978-1-4704-1668-3,
Amer. Math. Soc., Providence, RI, 2016, pp. 149–166.

[3] Batson, J., Spielman, D., Srivastava, N., Teng, S., Spectral Sparsification of Graphs: Theory
and Algorithms Communications of the ACM, 56: 87–94, 2013.
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