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1 Introduction

In the field of engineering and applied mathematics, optimizing an objective function—often re-
ferred to as cost or fitness—is a fundamental procedure. For single-variable functions, this process
is relatively straightforward, requiring the calculation of the first-order derivative and setting it
to zero. However, the complexity increases significantly for multi-variable functions, often necessi-
tating the use of various optimization techniques, such as Lagrange multipliers. These traditional
methods generally assume that the function to be optimized can be expressed analytically, a con-
dition that is seldom met in practical engineering problems. Consequently, numerical methods are
frequently employed. These methods typically involve computing the numerical gradient of the
function to find points where the gradient is zero.

This approach, however, is highly sensitive to the initial point where the gradient is calculated,
particularly if the function has multiple local minima. Additionally, gradient-based algorithms
face significant challenges when dealing with functions that exhibit discontinuities, such as sudden
steps or undefined regions. These limitations make it necessary to develop alternative optimization
methods, leading to the emergence of meta-heuristics algorithms [1, 2, 3]. These algorithms are
designed to overcome these challenges by employing strategies that do not rely on gradient infor-
mation. They often mimic natural phenomena, leveraging the inherent optimization capabilities
observed in nature.

This research introduces the fundamentals of the Gravitational Search Algorithm (GSA), a
meta-heuristic method inspired by Newton’s universal law of gravity[4]. The GSA models opti-
mization as a system of masses interacting through gravitational forces, with the objective function
acting as a gravitational field influencing the movement of these masses. The gravitational force
between two masses m1 and m2 separated by a distance ∥r12∥ is given by:

F12 = G
m1m2

∥r12∥2
r12. (1)

In this context, each candidate solution is treated as an object with mass, and the optimization
process simulates the gravitational attraction between these objects. The positions of the objects
in the search space are updated iteratively based on the gravitational forces, guiding the search
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towards optimal solutions. In general cases, the mass of each object is dynamically adjusted based
on its fitness value, ensuring that better solutions exert stronger attractive forces and thus have a
greater influence on the search process.

2 GSA models

GSA begins with N initial points randomly distributed across the search space, which are treated
as point masses. Each mass is assigned based on its fitness function evaluation:

mi(t) =
fitnessi(t)− worst(t)

best(t)− worst(t)
, (2)

where fitnessi is the cost function evaluation for the i-th mass, worst and best are the observed
worst and best values, respectively, and t is the current iteration. Once the masses are determined,
their acceleration is computed using a modified version of Newton’s law:

ai(t) =
N∑

j ∈ Kbest

j ̸= i

(rand)j ⊙
G(t) mj

∥rij∥+ ϵ
rij . (3)

Here, (rand)j is a vector of random numbers in the interval [0,1], ⊙ denotes the Hadamard
product, ϵ is a small number to avoid numerical errors when rij → 0, and rij = Xj(t) − Xi(t)
with Xi(t) is the position vector of the i-th mass. The inclusion of a randomized coefficient
introduces stochasticity, helping to avoid convergence to local minima. The Euclidean distance in
the denominator is not squared, which provides better overall results. Additionally, the acceleration
calculation considers only the Kbest masses, reducing linearly from N to 1 over time.

The acceleration vector is integrated twice to update the position for the next iteration t+ 1:

vi(t+ 1) = (rand)i ⊙ vi(t+ 1) + vi(t) (4)

xi(t+ 1) = xi(t) + vi(t+ 1) (5)

The time-varying gravitational constant G(t) in Equation (3) is crucial, as a higher value in-
creases the gravitational forces among agents. It is typically expressed as:

G(t) = G0 · e−α·t/T (6)

where T is the total number of iterations, and the parameters G0 and α are usually set to 100 and
20, respectively. Higher G(t) values are used initially for global exploration, decreasing gradually
for local exploitation.

The objective of this study is to enhance the GSA for optimizing space missions near Earth
by determining the optimal values of G0 and α, which vary due to the algorithm’s stochastic
nature. These enhancements aim to improve the performance and reliability of the GSA in practical
applications.

3 Bayesian Optimization

Bayesian optimization is a powerful strategy for identifying the extrema of objective functions that
are expensive to evaluate [5]. This method is particularly valuable in scenarios where a closed-form
expression for the objective function is unavailable, but observations can be obtained at sampled
values. It is especially effective for costly evaluations, non-convex problems, and situations where
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derivatives are inaccessible. This approach is analogous to hyper-parameter tuning in machine
learning algorithms, further justifying its application in meta-heuristic optimization [6].

Bayesian optimization is based on Bayes’ theorem:

P (M |E) ∝ P (E|M) · P (M) (7)

In this context, M represents an estimate of the unknown function, and E denotes the obser-
vations. Bayes’ theorem provides a framework for updating the probability of a model given new
evidences. Bayesian optimization involves constructing a prior surrogate model of the function and
iteratively selecting points in the search space for evaluation. These points are chosen using an
acquisition function, which balances exploration and exploitation, making this method well-suited
for expensive-to-evaluate functions. As an example, this process can be graphically seen in Figure
1 for the case of a 1D problem.

Figure 1: Application of Bayesian optimization to a 1D problem

4 Some Applications

To optimize space trajectories, we define an objective function for the Bayesian optimization pro-
cess that minimizes the average ∆V impulse error from multiple Hohmann transfers [7, 8, 9].
This involves evaluating different values of T and N , the number of masses, to determine their
impact on the parameters G0 and α. To ensure the algorithm’s robustness, the search space is
adimensionalized, standardizing all dimensions to the range [0,1].
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The results, exemplified in Figure 2, illustrate the average error as a function of G0 and α for
specific values of N and T . By evaluating these parameters across different Hohmann transfers, we
can assess their effectiveness and reliability.

Figure 2: Results example of a Bayesian optimization process.

A practical application, such as a water-propelled satellite designed to collect space debris,
showcases the method’s ability to significantly improve fuel efficiency. Additionally, we discuss
the implications of the No Free Lunch Theorems [1] and the potential benefits of hybridizing this
approach with other optimization techniques.
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2021. http://hdl.handle.net/10251/164022.
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