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1 Introduction 

In Europe alone, an average of 26% of olive grove production is lost annually due to plant pests 

and diseases, with a direct economic cost of more than 7.8 billion euros per year, with an upward 

trend. Of these diseases, two are particularly important because of their potential impact or their 

current extent: Xylella Fastidiosa and Verticillium Wilt. Xylella Fastidiosa in particular has 

been devastating for Italy in recent years. Its rapid spread threatens European arboriculture. In 

all cases, early and accurate detection and diagnosis of plant diseases are key factors for plant 

production and reduction of qualitative and quantitative crop yield losses. 

Moreover, accurate detection and diagnosis can lead to localised and individualised treatment, 

applying doses of plant protection products as strictly necessary, avoiding their massive and 

indiscriminate use (their overuse is estimated at 31%). Both objectives, i.e. avoiding crop yield 

losses and reducing the overuse of pesticides, are addressed by the key component of the Euro-

pean Green Pact "Farm to Fork". 

However, despite the huge economic, environmental, and social impacts this entails, there is a 

lack of solutions to improve disease risk and treatment management towards early detection 

and smart product application. 

Therefore, the objective of this project is to develop a high-precision, low-cost, real-time system 

for diagnosing the state of health of olive tree crops. The system will also include a digital 

platform to show whether the plants analysed have the Xylella Fastidiosa or Verticillium Wilt 

disease and their degree of progress, as well as their spatial location. 

Disease detection system for olive trees using unmanned 
aerial vehicles (drones)



2 Methods 

To achieve said objective, the team has used a drone with built-in hyperspectral and thermal 

cameras to capture information, which is then processed through an algorithm to obtain a 

diagnosis of the health of the plants of a given crop. The two main innovations of the system 

are described below: 

2.1 Optimisation of data acquisition from drone flight parameters to improve the quality of 
hyperspectral and thermal images 

A correct selection of the drone flight parameters is extremely important in relation to the 

usefulness of the captured information. Therefore, the influence of the flight parameters on the 

quality of the images from the hyperspectral and thermal cameras must be determined. The 

objective is to create a flight plan by selecting the optimal parameters that minimise the flight 

time and number of images needed to perform the analysis, while maximising the quality of the 

images. 

The flight parameters considered are 5: i) flight altitude; ii) lateral image; iii) flight speed; iv) 

flight direction; and v) solar elevation (which depends on the time of day at which the flight is 

performed). The flight height, in turn, can be replaced by 4 other variables that can be analysed 

and depend on it: ground pixel size (GSD), forward image overlap, mean image area and mean 

tilt angle. 

To determine the influence of the selected flight parameters, the methodology described by Tu 

et. al. (2020) [1] will be used, in which partial least squares (PLS) regression is applied, 

considering the 8 variables described above as independent variables (X) and the following as 

dependent variables (Y): 

▪ Alignment quality: RMSE and tie point acceptance rate.

▪ Point cloud quality: normalised point cloud density.

▪ Hyperspectral indicators: R2 and RMSE of NDVI

2.2 Diagnosis of the state of health of the plants that make up an olive grove, identifying 

diseased plants, type of disease affecting them and degree of progress 

First, the images are atmospherically corrected, orthorectified and tree crowns are segmented. 

Secondly, the 21 spectral indices shown in Table 1 are analysed to obtain statistical regressions 

between said indices and the assessment of the diseases X. Fastidiosa and V. Wilt.  



Finally, trees are classified 

according to their health status 

using linear discriminant 

analysis (LDA) and a support 

vector machine (SVM), which 

exploit the combined 

information of the previously 

calculated indices. The LDA 

method is used for the 

classification of early stages of 

disease development, while 

the SVM discriminates against 

advanced stages.  

Linear discriminant analysis 

(LDA) is a method used in 

statistics, pattern recognition 

and machine learning to find a 

linear combination of features 

that characterise or separate 

two or more classes of objects 

or events. The resulting 

combination can be used as a 

linear classifier, or, more 

commonly, for dimensionality 

reduction prior to further 

classification. 

In relation to Support Vector Machine (SVM) methods, these are properly related to 

classification and regression problems. Given a training set of samples, one can label the classes 

and train an SVM to build a model that predicts the class of a new sample. Intuitively, an SVM 

is a model that represents the sample points in space by separating the classes into two spaces 

as wide as possible by a separating hyperplane. When the new samples are put in 

correspondence with this model, depending on the spaces to which they belong, they can be 

classified into one class or the other. 

3 Results 

First, a commercial drone capable of supporting the cameras (DJI Inspire 2) was selected. The 

flight software it had integrated was analysed and the 8 flight parameters were analysed, 

determining the percentage of dominance of each flight parameter with respect to the quality 

indicators. This will improve the quality of the hyperspectral and thermal images captured by 

the system and, in addition, adjust the number of images per second captured, reducing the 

amount of data and allowing their transmission in real time. 

Table 1 Indices considered in the assessment of the diseases 

X. Fastidiosa and V. Wilt

Vegetation Indices Equation

Normalized Difference Vegetation Index N D V I = ( R 800 − R 670 ) / ( R 800 + R 670 )

Renormalized Difference Vegetation Index R D V I = ( R 800 − R 670 ) / ( R 800 + R 670 )

Enhanced Vegetation Index
E V I = 2.5 ⋅ ( R 800 − R 670 ) / ( R 800 + 6 ⋅ R 670 − 

7.5 ⋅ R 400 + 1 )

Optimized Soil-Adjusted Vegetation Index
O S A V I = ( ( 1 + 0.16 ) · ( R 800 − R 670 ) / ( R 800 + 

R 670 + 0.16 ) )

Triangular Vegetation Index
T V I = 0.5 · [ 120 · ( R 750 − R 550 ) − 200 · ( R 670 − 

R 550 ) ]

Modified Triangular Vegetation Index
M T V I = 1.2 · [ 1.2 · ( R 800 − R 550 ) − 2.5 · ( R 670 − 

R 550 ) ]

Modified Simple Ratio M S R = R 800 / R 670 − 1 ( R 800 / R 670 ) 0.5 + 1

Photochemical Reflectance Index (570) P R I 570 = ( R 570 − R 531 ) / ( R 570 + R 531 )

Vogelmann V O G 1 = R 740 / R 720

Gitelson &Merzlyak indices G M 1 = R 750 / R 550

Pigment Specific Simple Ratio Chlorophyll b P S S R b = R 800 / R 650

Transformed Chlorophyll Absorption in Reflectance 

Index

T C A R I = 3 · [ ( R 700 − R 670 ) − 0.2 · ( R 700 − R 

550 ) · ( R 700 / R 670 )

Transformed Chlorophyll Absorption in Reflectance 

Index/ Optimized Soil-Adjusted Vegetation Index

T C A R I / O S A V I = 3 · [ ( R 700 − R 670 ) − 0.2 · ( R 

700 − R 550 ) · ( R 700 / R 670 ) ( ( 1 + 0.16 ) · ( R 800 

− R 670 ) / ( R 800 + R 670 + 0.16 ) )

Redness index R = R 700 / R 670

Blue/green indices B G I 1 = R 400 / R 550

Lichtenhaler index L I C 3 = R 440 / R 740

Pigment Specific Simple Ratio Carotenoids P S R R c = R 800 / R 500

R515/R570 R 515 / R 570

R515/R670 R 515 / R 670

FLD F L D 3   ( 747 ; 762 ; 780 )

Healthy-index H I = R 534 − R 698 R 534 + R 698 − 1 2 · R 704

Fluorescence

Plant disease index

Table : Overview of the vegetation indices that contribute most to the model conducted in 

this study and their formulations.

Structural indices

Xanthophyll indices

Chlorophyll a+b indices

R/G/B indices

Carotenoid indices



A hyperspectral camera with 260 bands in the 400-1000nm region and a thermal camera with 

thermoelectric cooling stabilisation have been selected. Both were calibrated in the laboratory. 

The atmospheric correction was performed 

with the SMARTS irradiance model for the 

ground surface. The orthorectification of the 

hyperspectral images was performed using 

the PARGE software (ReSe Applications 

Schläpfer, Wil, Switzerland). This is done 

using the input data acquired with a 

miniaturised inertial measurement unit 

(IMU) (model MTiG, Xsens, The 

Netherlands) installed on board and 

synchronised to the camera. 

4 Conclusions 

To date, the system has succeeded in obtaining the optimal flight parameters required to reduce 

the amount of data processed and the necessary steps to pre-process the spectral images. 

Successful development of the system still requires overcoming challenging, such as the ones 

listed below: 

▪ Laboratory analysis of a sample of olive trees.

▪ Obtain a relationship between the X. Fastidiosa and V. Wilt diseases with the proposed

spectral indices.

▪ Obtain a map to visualise the health of olive trees in real time.
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Fig. 1 Images obtained during a flight in 

Benimantell (Alicante) 


