
Numerical Linear Algebra and Machine Learning:

Low-rank matrix factorizations for Data Analysis
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Artificial Intelligence vs Machine Learning vs Deep Learning vs Data Science

There is a lot of buzz around the terminology Data Science, Artificial Intelligence,
Machine Learning, Deep Learning

Many times people use this interchangeably without actually understanding what it
actually means.

The diagram briefly shows how all these concepts are related.
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Artificial Intelligence vs Machine Learning vs Deep Learning vs Data Science

Artificial Intelligence (AI) refers to the overall gamut of techniques which enables
computer to think. The core objective of AI is to impart human
intelligence to machines and enable them to act like humans.

Machine Learning (ML) is a sub area of AI based on (statistical) tools to learn from
data. It enables the computer to make a decision based on data rather
than on explicitly rule based programs to perform a specific task.

Deep Learning (DL) is a recent area which has taken shape since 2006 and has given a
new approach to ML. It uses Multilayered Neural Networks (inspired by
human brain).
Deep neural networks obtain impressive results for image, sound and
language recognition or to address complex problems in physics. They are
partly responsible for the renewal of artificial intelligence.

Some of the most important advances in the last years in AI has
happened using Deep Learning!

Data Science It overlaps with Machine Learning and Artificial Intelligence techniques,
and (not so much) with Deep Learning. It enables us to analyze and
manipulate large volumes of data to find meaning and appropriate
information.
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What is Data Science?

Data Science is a set of algorithms and techniques to analyze and understand actual
phenomena with ”data”.

The aim of data science is to reveal the features or the hidden structure of complicated
natural, human and social phenomena with data.

In other words, data science extracts knowledge from data.

To achieve this, data science draws on elements of machine learning, and mathematical
fields such us linear algebra, optimization and statistics.

The study of extracting information from data has become crucial in many many field
ranging from business (e-commerce), engineering, medicine (bioinformatics), and many
others

In order to obtain information from data it is not necessarily implied that the amount of
data is big, but often it is!
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Learning from data in Data Science and Machine Learning

The task of extracting meaningful information from the collected data vary between areas
and two broad classes of techniques are considered:

Supervised learning (classification, regression)

A model is trained from a set of labeled data divided into classes.

Afterward the model is applied to predict the class label for incoming
unlabeled data.

It is called supervised learning because the training data set supervises
the learning process.

Unsupervised learning (clustering, dimensionality reduction)

The data being processed are unlabeled.

In the lack of prior knowledge, the algorithm tries to search for a
similarity to generate clusters and assign classes.
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Matrix method for Data Science

Data is represented as vectors, matrices or tensors.

Large m × n matrices are common in applications since the data often consist of m
objects, each of which is described by n features.

Examples of object–feature pairs include:

documents and words contained in those documents;

genomes and environmental conditions under which gene responses are measured;

MR Images and type of cancer lessions;

web groups and individual users;

and many others.

Also in many applications data is represented as tensors, arrays of real numbers with
three or more indices i.e. T = (tijk) ∈ Rn1×n2×n3 .

Examples:

a collection of color images of say 32× 32 pixels each and three channels (RGB)

a collection of pictures of the same person with different expressions for face
recognition systems.
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Example 1. Term-document matrices are used in information retrieval

Consider the following selection of five documents. Key words (in boldface) will be
called terms.

Document 1 The Google matrix P is a model of the Internet.
Document 2 Pij is nonzero if there is a link from Web page j to i .
Document 3 The Google matrix is used to rank all Web pages.
Document 4 The ranking is done by solving a matrix eigenvalue problem.
Document 5 England dropped out of the top 10 in the FIFA ranking.

If we count the frequency of terms in each document we get the following result:

Term Doc 1 Doc 2 Doc 3 Doc 4 Doc 5
eigenvalue 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
Web 0 1 1 0 0
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Example 1. Continued.
Each document is a vector in R10 and
all documents can be organized into
the term-document matrix A.

A =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0



Now find all documents that all relevant to
the query ranking of Web pages. This is
represented by the query vector q ∈ R10:

q =



0
0
0
0
0
0
0
1
1
1


The query itself is a document.

The information retrieval task can now be formulated as a mathematical problem:

find the columns of A that are close to the vector q.

To solve this problem we must use some distance measure in R10 .
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Example 2. Pattern recognition

The classification of handwritten digits is a model problem in pattern recognition.

Here vectors are used to represent digits.

The image of one digit is a 16 × 16 matrix of numbers, representing gray scale. It can
also be represented as a vector in R256, by stacking the columns of the matrix.

A set of n digits (handwritten 3s, say) can then be represented by a matrix A ∈ R256×n ,
and the columns of A span a subspace of R256 .

Three basis vectors of the 3-subspace are illustrated in Figure below (bottom).

A. Mart́ınez Calomardo Numerical Linear Algebra and Machine Learning December 9, 2020 9 / 72



Example 3: Face Recognition (Tensor data representation)

Assume that we have a collection of images of np persons, where each image is an
mi1 ×mi2 array with mi1 ·mi2 = ni .

Usually the columns of the images are stacked so that each image is represented by a
vector in Rni .

Each person has been photographed with ne different facial expressions.

The collection of images is stored as a tensor

A ∈ Rni×ne×np

If, for instance we also had photos of each person with different illumination,viewing
angles, etc., then we could represent the image collection by a tensor of higher degree.

The following images (five images of the same person with different expressions) are
taken from the Yale Face Database by reducing each image to 112× 78 pixels stored in a
vector of length 8736.
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The key role of Linear Algebra in Data Science and Machine Learning

Linear Algebra makes the core foundation for Machine Learning algorithms ranging
from simple linear regressions to Deep Neural Networks and Data Science.

The major reason for that is that the set of data can often be represented using a
2-D matrix where the column represents the features and the row represents the
different sample data points.

Many data analysis applications deal with large matrices and matrix computations
using all of the values in the data matrix are sometimes redundant or rather
computationally expensive.

Besides, rows and columns of numbers do not have a meaning of their own and it’s
almost impossible to spot any relevant correlation or pattern at a first glance.

Fundamental step

To construct a compressed representation of A such that the most important part
which is needed for further computations could be extracted easily, and where the hidden
structure of the data may be easier to analyze and interpret.
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Matrix factorizations and low-rank approximation of matrices

This compressed representation is a low-rank approximation of the data matrix.

Low-rank approximation of matrices has been well studied in literature and have received
much attention over the last years.

It consists in approximating a matrix by one whose rank is less than that of the original
matrix while retaining most information contained in the data (i.e. with limited loss of
information):

Low-rank matrix approximation

Given A ∈ Rm×n, the low-rank approximation (rank k) of A is given by

A ≈WH

where W ∈ Rm×k and H ∈ Rk×n

Note that only k(m + n) entries must be stored instead of the mn entries of the original
matrix.

Low-rank matrix factorizations are a ubiquitous tool in data science.

Example: matrix factorization techniques used for recommender systems1.
1Netflix challenge https://en.wikipedia.org/wiki/Netflix Prize
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Example. The Netflix recommender system

A recommender system, or a recommendation system, is a subclass of information
filtering system that seeks to predict the ”rating” or ”preference” a user would give to an
item.

The Netflix Prize was an open competition for the best collaborative filtering algorithm
to predict user ratings for films, based on previous ratings without any other information
about the users or films.

i.e. without the users or the films being identified except by numbers assigned for the
contest.

Training data provided by Netflix

100M ratings (from 1 to 5) of 17K movies by 500K users
in the form of a triplet of numbers: (User,Movie,Rating),
i.e. one such entry might be (105932,14002,3).

Data are organized as a big sparsely filled matrix A (1.2% is nonzero), with users as rows
and movies as columns.

Each nonzero coefficient Aij contains an observed rating (1-5) for movie i by user j .

Now given (User,Movie,?) not in the database, we want to predict how the given User
would rate the given Movie
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Example. The Netflix recommender system

The Data matrix is very big and sparse

It is important to express the information contained in the data matrix in a more
compact and descriptive way.

IDEA: Feature extraction
Any given movie can be described in terms of some basic attributes such as overall
quality, whether it’s an action movie or a comedy, what stars are in it, and so on.

And every user’s preferences can likewise be roughly described in terms of whether they
prefer action movies or comedies, what stars they like, and so on.

Imagine that we limit it to k = 40 aspects, such that each movie is described only by 40
values saying how much that movie exemplifies each aspect, and correspondingly each
user is described by 40 values saying how much they prefer each aspect.

What does this mean in matrix terms?
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Low-rank data matrix approximation

In matrix terms, the original matrix would be decomposed into two very oblong matrices:

the 17,000 x 40 movie aspect matrix W ,

the 40 x 500,000 user preference matrix H.

W and H obtained by minimizing some function error like ‖A−WH‖.

These can combined all together into a rating matrix R in which Rij is the scalar product
between the i-th row of W and the j-th column of H:

Rij =
40∑
k=1

WikHkj

Example. Terminator might be (action=1.2,chickflick=-1,...), and user Joe might be
(action=3,chickflick=-1,...), and when you combine the two you get Joe likes Terminator
with 3 · 1.2 + (−1) · (−1) + . . . = 4.6 + . . . (negative weights may be OK)

A high Rij value means that User j would probably highly rate Movie i .
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A matrix factorization model for recommender systems

Formally:

A matrix factorization model maps both users and items to a joint latent factor space of
dimensionality k.

In that space, user-item interactions are modeled as inner products.

Items i

U
se

rs



Rui



u

=





[ ]
item i −→ q i ∈ Rk ; q i : Its elements
measure the extent to which item i possess
each factor.

user u −→ pu ∈ Rk pu: Its elements measure
the interest that user u has on each factor.

Rui = pT
u q i User u rating for item i.

High correspondance bewteen item and user factors leads to a recommendation
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The Singular Value Decomposition (SVD) of a matrix

SVD is the “creme de la creme” of rank-reducing decompositions, the
decomposition that all others try to beat.

G. W. Stewart

Matrix Algorithms Vol. 1. Basic decompositions.

SIAM, 1998.

A. Mart́ınez Calomardo Numerical Linear Algebra and Machine Learning December 9, 2020 17 / 72



The Singular Value Decomposition (SVD) of a matrix

The Singular Value Decomposition (SVD) is the generalization of the concept of
eigendecomposition for general matrices.

Theorem

For every matrix A ∈ Rm×n there exist two orthogonal matrices U ∈ Rm×m, V ∈ Rn×n

and a matrix Σ ∈ Rm×n with the following form

Σ =

[
Σr 0
0 0

]
, Σr =


σ1

σ2

. . .

σr

 ,
with σ1 ≥ σ2 ≥ . . . ≥ σr > 0, r ≤ min{m, n} such that

A = UΣV T .

The scalars σi are called singular values of A. The columns of V and U are called right

and left singular vectors of A, respectively.
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The SVD of a matrix

Since V and U are orthogonal, the SVD decomposition can be equivalently written as

AV = UΣ, A

v 1 . . . v n

 =

u1 . . . um




σ1

. . .

σr

0

0 0



Considering matrices U and V columnwise, i.e., U =
[
u1 . . . um

]
and

V =
[
v 1 . . . v n

]
we have that

Av 1 = σ1u1, . . . , Av r = σrur

and
Av r+1 = 0, . . . , Av n = 0
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The reduced form of the SVD

The column-row multiplication of UΣ times V T separates A into rank 1 pieces:

A = UΣV T =
r∑

i=1

σiu ivT
i .

Observing that on the previous sum only the first r columns of U and V are involved we
can reduce the equation AV = UΣ to

AVr = UrΣr ,

where now Vr =
[
v 1 . . . v r

]
, Ur =

[
u1 . . . ur

]
, and Σr = diag(σ1, . . . , σr ).

Note: Matrices Ur ,Vr are no longer square. They satisfy UT
r Ur = I ,V T

r Vr = I but, in
the common case in which r < min{m, n}, UrU

T
r 6= I , VrV

T
r 6= I .

Exercise. Prove that
A = UrΣrV

T
r .
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The SVD of a matrix

Pictorial representation of the sizes of the matrices involved in the SVD:




︸ ︷︷ ︸

A




︸ ︷︷ ︸
V

=




︸ ︷︷ ︸

U



σ1
. . .

σr
0

0


︸ ︷︷ ︸

Σ




︸ ︷︷ ︸

A

 Vr


︸ ︷︷ ︸

V

=


Ur


︸ ︷︷ ︸

U



σ1
. . .

σr
0

0


︸ ︷︷ ︸

Σ
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The Important Fact in Data Science

Like other common factorizations such that A = LU, “LU” factorization, or A = QR,
“QR” factorization, the SVD separates the matrix into rank one pieces.

A special property of the SVD is that those pieces come in order of importance:

1 A1 = σ1u1vT
1 is the rank one matrix closest to A.

2 . . . . . .

3 Ak = σ1u1vT
1 + . . . σkukvT

k =
∑k

i=1 σiu ivT
i is the rank k matrix closest to A.

Theorem (Eckart-Young)

If B has rank k then
‖A− Ak‖ ≤ ‖A− B‖

for every unitarily invariant matrix norm (e.g. the 2-norm or the Frobenius norm).
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The Important Fact in Data Science

The Eckart-Young theorem tell us that:

Best rank k approximation

Truncating the Singular Value Decomposition at some number k � min{m, n} terms
provides the “best” rank-k approximation to A when measured with respect to any
unitarily invariant matrix norm.

So we can obtain an optimal approximation of rank k by setting the singular values
beyond the k−th to zero (zeroing out the r − k trailing singular values).

The error in the approximation can be explicitly computed depending on the norm.
Two most common examples:

min
rank(B)≤k

‖A− B‖2 = ‖A− Ak‖2 = σk+1

min
rank(B)≤k

‖A− B‖F = ‖A− Ak‖F =
√
σ2
k+1 + . . .+ σ2

r .

Note finally that Ak = UkU
T
k A = AVkV

T
k .
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Computing the SVD

Practical computation of the SVD requires the following steps:

1 Reduce matrix A ∈ Rm×n to a bidiagonal form, i.e. find two orthogonal matrices
UB ,VB such that

UT
B AVB = B, B =



α1 β1 0 0
0 α2 β2 0

0 0
. . .

. . .

0 0 0 αn

0 0 0 0
. . . . . . . . . . . .
0 0 0 0


2 Compute the SVD of matrix B, namely matrices U2,V2 and Σ such that

B = U2ΣV T
2 .

Then the final SVD of A will be

A = UBUDΣV T
D V T

B .
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First Step: reducing A to bidiagonal form
Dense (small) matrices

Bidiagonal matrix B is written as UT
B AVB where UB and VB are expressed as a product of

Householder matrices2

UB = U1 · U2 . . .Un, VB = V1 · V2 . . .Vn−2,

Example.
x x x x
x x x x
x x x x
x x x x
x x x x

 UT
1−→


x x x x
0 x x x
0 x x x
0 x x x
0 x x x

 V1−→


x x 0 0
0 x x x
0 x x x
0 x x x
0 x x x

 . . .

. . .
UT

4−→


x x 0 0
0 x x 0
0 0 x x
0 0 0 x
0 0 0 0


2Multiplying on the left A by a Householder matrix H = I − 2wwT , for suitable w , ‖w‖ = 1 annihilates

column elements below the diagonal, while multiplication on the right provides zeros in appropriate entries in a
single row
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Computing the SVD for large matrices
Iterative procedure for bidiagonalization: the Golub-Kahan-Lanczos method.

We need to find two matrices with orthonormal columns UB ,VB such that AVB = UBB:

A
[
v 1 . . . v n

]
=
[
u1 . . . un

]

α1 β1 0 0
0 α2 β2 0

0 0
. . .

. . .

0 0 0 αn

 (1)

from which

Av k = αkuk + βk−1uk−1 =⇒ αkuk = Av k − βk−1uk−1 , k = 1, . . . , n.

The bidiagonalization relation can also be written as V T
B ATUB = BT or

AT [u1 . . . un

]
=
[
v 1 . . . v n

]

α1 0 0 0
β1 α2 β2 0

0 0
. . .

. . .

0 0 βn−1 αn

 (2)

from which

ATuk = αkv k + βkv k+1 =⇒ βv k+1 = ATuk − αkv k , k = 1, . . . , n.
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The Golub-Kahan-Lanczos Algorithm

αkuk = Av k − βk−1uk−1

βkv k+1 = ATuk − αkv k

Imposing that ‖uk‖ = 1 and ‖v k+1‖ = 1, we have that

αk = ‖Av k − βk−1uk−1‖ and βk = ‖ATuk − αkv k‖.

Algorithm 1 The Golub-Kahan-Lanczos Algorithm

1: Choose an arbitrary unit norm vector v 1, β0 = 0.

2: for k = 1, 2, . . . do

3: uk = Av k − βk−1uk−1

4: αk = ‖uk‖.
5: uk = uk/αk .

6: v k+1 = ATuk − αkv k

7: βk = ‖v k+1‖.
8: v k+1 = v k+1/βk .

9: end for
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Convergence and computational cost
After at most n steps the scalar βn = 0 and the algorithm stops with the exact
bidiagonalization matrices.

However, the procedure is usually stopped earlier. When?

At step k the following relations hold

AV
(k)
B = U

(k)
B B(k)

ATU
(k)
B = V

(k)
B B(k)T + βkv k+1eT

1 .

so βk < ε can be used as exit test.

In that case the largest singular values of B(k) are good approximations to the
largest singular values of A.

Computational cost.

Case Cost

Dense matrix Full bidiagonalization O(mn2)
Dense matrix Incomplete bidiagonalization O(kmn)
Sparse matrix3 Incomplete bidiagonalization O(kcn)

G. Golub and C. Van Loan

Matrix Computations, 4th Edition

Johns Hopkins University Press, 2013
3We assume that the nonzeros of A are cn with c � m.
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Second step. Computing the SVD of B
The most known method is the Golub-Reinsch which employs implicit shift-QR method

However a simpler approach is based on the following idea:

Assume B is square k × k. The relation B = UΣV T can be exploited to obtain the
following eigenproblem:[

0 BT

B 0

]
︸ ︷︷ ︸

H

[
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]

So the problems simplifies to computing the eigenvalues of H (which is better
conditioned than BTB) through the following steps:

Permute rows and columns of H to obtain a tridiagonal matrix T = PTHP with the
same eigenvalues of H.

Compute the eigenvalues and eigenvectors of the 2k × 2k by decomposing T as

T = FDFT ,

where the first k entries of D are the k singular values while the singular vector of B
can be extracted from F . In fact from D = FTPTHPF we have that the
eigenvectors of H are the column of PF . Finally, setting Z = PF :

V = Z(1:k,1:k), U = Z(k+1:2k, 1:k).
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Computing the SVD from the Polar Decomposition

Represents a new line of research that exploits the availability of efficient algorithms
recently proposed to compute the Polar decomposition of a matrix.

Polar decomposition

Any rectangular matrix A ∈ Cm×n(m ≥ n) has a polar decomposition (PD)

A = QpH,

where Qp ∈ Cm×n is a (tall) matrix with orthogonal columns and H ∈ Cn×n is Hermitian
positive semidefinite.

The SVD of A can be obtained by further computing the eigendecomposition of H, .i.e,

A = Qp(VΛV ∗) = (QpV )ΛV ∗ := UΛV ∗.

See for instance:

N. J. Higham and P. Papadimitriou

A parallel algorithm for computing the singular value decomposition

In J. G. Lewis, editor, The Fifth SIAM Conference on Applied Linear Algebra, pages 8084, Philadelphia,

1994. SIAM.
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Computing the SVD from the Polar Decomposition

Advantages:

The SVD problem is reduced to an eigenvalue problem via the polar decomposition,
therefore it can take benefit of well-developed scalable eigensolvers.

Main drawback:

It requires much more floating point operations than the bidiagonal reduction approach.

The remaining problem is how to compute the polar decomposition in a scalable and
efficient way. Very important recent works in this direction:

Y. Nakatsukasa and R. W. Freund.

Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations:
The power of Zolotarev’s functions.
SIAM Review, 2016.

Ltaief, Hatem and Sukkari, Dalal and Esposito, Aniello and Nakatsukasa, Yuji and Keyes, David.

Massively Parallel Polar Decomposition on Distributed-Memory Systems,
ACM Trans. Parallel Comput., 6(1), 2019.

https://doi.org/10.1145/3328723,doi 10.1145/3328723.
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Principal Component Analysis (PCA)

PCA is an important technique frequently used for data analysis and dimensionality
reduction in many applications:

Quantitative finance

Image Compression

Facial Recognition

Medical Data correlation

Neuroscience

and others

It is strictly related with the SVD.

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal components.

This is done by finding the directions (principal components) in which the projected data
display maximum variance.
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Principal Component Analysis (PCA)
Let us consider our matrix A ∈ Rm×n columnwise. Each column ai , i = 1, . . . n is a
sample of m variables. Usually m < n (sometimes m� n).

Example. Consider samples describing height (in cms) and weight (in Kgs) of 10 men
stored in a matrix A as

SAMPLES

A =

[
178 190 169 162 177 178 193 190 188 184
78 84 65 68 78 85 80 88 77 76

]
x1

x2
variables

First compute the means of the n rows and collect them as a column vector:

µA =
1

n

n∑
i=1

ai ,

then define a new matrix B whose columns are bi = ai − µA, i = 1 . . . , n.

Each row of the centered matrix B has zero mean.

In our example

B =

[
−2.9 9.1 −11.9 −18.9 −3.9 −2.9 12.1 9.1 7.1 3.1
0.1 6.1 −12.9 −9.9 0.1 7.1 2.1 10.1 −0.9 −1.9

]
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Principal Component Analysis

We now define the covariance matrix which measures the correlation among the samples
as

S =
1

n − 1
BBT =

(
1√
n − 1

B

)(
1√
n − 1

B

)T

≡ B̂B̂T

The meaning of S is that Sii represents the variance of variable i while Sij , i 6= j has the
meaning of the covariance of the i-th and the j-th variables.

The total variance of the dataset is τ = tr(S) =
m∑
i=1

sii .

τ can also be expressed using the Frobenius norm of B̂ as τ = tr(B̂B̂T ) = ‖B̂‖2
F .

In our example:

S =

[
100.322 53.322
53.322 51.433

]
τ = 151.7556.
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Principal Component Analysis
We denote as σ2

v the variance along a vector v defined as:

σ2
v =

1

n − 1

n∑
i=1

(bi T v)2

The main idea of the PCA is to find the vector which maximize the variance σ2
v .

σ2
v =

1

n − 1

n∑
i=1

(bi T v)2 =
1

n − 1

n∑
i=1

vT (bibi T )v =

=
1

n − 1
vT

(
n∑

i=1

(bibi T )

)
v = vTSv .

Since S is symmetric then the maximum value of vTSv is the largest eigenvalue of S (if
we choose v of unit Euclidean norm) and v = v 1 is the corresponding eigenvector.

The fraction of the variance along this vector is
σ2

1

τ
.

Regarding the previous example we find that

v 1 =

[
−0.8416
−0.54

]
σ1

2 = 134.5356,
σ2

1

τ
= 0.8865.
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Principal Component Analysis

Geometrically

Samples (blue stars)

and Principal components

Samples and their projections

onto the Principal components

Samples and their distances

from the Principal components

The first principal component can equivalently be defined as a direction that maximizes
the variance of the projected data.

The i-th principal component can be seen as a direction orthogonal to the first i − 1
principal components that maximizes the variance of the projected data.
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Principal component analysis and SVD

The principal components are the eigenvectors of the covariance matrix S related to the
largest eigenvalues.

These are precisely the right singular vectors of B̂ corresponding to the largest singular
values σ1, . . . , σk , which can be obtained from the SVD of matrix B̂ (since S = B̂T B̂):

B̂ = UΣV T , which is the same as S = VΣ2V T ,

where the first columns of V (Vk) are the k principal components.

If a small number (say k) of the largest eigenvalues are significantly larger than the
others then the size of the original problem can be reduced to a problem of dimension k.

After forming the matrix Vk =
[
v 1 . . . v k

]
of the first k principal components we

could obtain the PCA projection of the initial data using the truncated SVD

Ãk = UkU
T
k A = AVkV

T
k

We can finally relate the measure of the efficiency of the approximation, i.e. the fraction
of the total variance, using the singular values of B̂:∑k

i=1 σ
2
i

τ
=

∑k
i=1 σ

2
i∑n

i=1 σ
2
i

= 1−
∑n

i=k+1 σ
2
i∑n

i=1 σ
2
i

.
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Trying it out in practice

See: example svd.m
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Limits of the SVD for data science

Principal Component Analysis (PCA) and more generally the SVD are fundamental
data analysis tools that express a data matrix in terms of a sequence of orthogonal
(or uncorrelated) vectors of decreasing importance.

Unfortunately, being linear combinations of almost all the data points, these vectors
are notoriously difficult to interpret in terms of the data and processes generating
the data.

As an example, if all columns of A are non negative, the singular vectors can have
negative components.

The desire for interpretability in data analysis is sufficiently strong so as to argue for
Interpretable low-rank matrix decompositions

Decompositions belonging to this class are:

I The CUR decomposition

I The nonnegative matrix factorization (NMF)
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The CUR decomposition

Is an approximate low-rank factorization which is explicitly expressed in terms of a
small number of columns and rows of the original matrix.

Given A ∈ Rm×n of rank r we can reconstruct the matrix as:

A = CUR

by choosing C ∈ Rm×r with r columns of A, R ∈ Rr×n with r rows of A, selected such
that the intersection matrix W ∈ Rr×r is nonsingular and U = W−1.

When the number of selected columns k is less than the actual rank this decomposition
provides a low-rank approximation of A.

The extent to which A ≈ CUR will depend sensitively on the choice of C and R (Column
Subset Selection Problem – CSSP) as well as on the construction of U.

The low-rank approximation provided by CUR is often nearly as good as that provided by
the SVD, but it is directly interpretable.

CUR matrices C and R inherit the sparsity of the original data matrix (much less memory
is needed than for storing the SVD orthogonal matrices).
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Column subset selection problem (CSSP)

Definition (CSSP): Given a matrix Am×n and a positive integer k as the number of
columns of A forming a matrix C ∈ Rm×k such that the residual ‖A− PCA‖ξ is

minimized over all possible

(
n
k

)
choices for the matrix C .

Here PC = CC+ (C+ is Moore-Penrose pseudoinverse of C) denotes the projection onto
the k dimensional space spanned by the columns of C and ξ = 2 or F .

Finding k columns out of n columns such that ‖A− PCA‖ξ is minimum is a hard

optimization problem, requiring O(nk) time (prohibitively high if the data size is large).

The NP-hardness of the CSSP (assuming k is a function of n) is an open problem.

Christos Boutsidis, Michael W Mahoney, Petros Drineas

An improved approximation algorithm for the column subset selection problem

Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, 2007

Research is focused on computing approximate solutions to CSSP.

Error. Let Ak be the best low rank k approximation. The most common algorithms in the
literature select k columns of A such that matrix C satisfies, for some function p(k, n),

‖A− Ak‖ξ ≤ ‖A− PCA‖ξ ≤ p(k, n) ‖A− Ak‖ξ .
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Historical Evolution of the CUR matrix decomposition

1 G. W. Stewart developed the quasi-Gram-Schmidt method and applied it to a matrix and its
transpose to obtain a CUR decomposition.

G. W. Stewart

Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse
matrix
Numerische Mathematik, 1999

Berry, M. W. and Pulatova, S. A. and Stewart, G. W.

Algorithm 844: Computing Sparse Reduced-Rank Approximations to Sparse Matrices,

ACM Transaction on Numerical Software, 2005.

2 Goreinov, Tyrtyshnikov and Zamarashkin developed a CUR matrix decomposition
(pseudoskeleton approximation) and related the choices of columns and rows to a “maximum
uncorrelatedness” concept.

Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.

A theory of pseudoskeleton approximations

Linear Algebra and its Applications, 1997

3 Drineas, Kannan and Mahoney constructed a CUR decomposition by choosing columns and rows
simultaneously.

Drineas, P., Kannan, R., Mahoney, M.W.

Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix
Decomposition

SIAM Journal on Computing, 2006
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A practical CUR algorithm

We now describe a possible CUR implementation from

Mahoney, M.W. and Drineas, P.

CUR matrix decompositions for improved data analysis

Proceedings of the National Academy of Sciences, 2009

Leverage Score CUR (LSCUR)

For all columns of A (and AT ) an importance score is computed which aims at
capturing the influence of a given column in the best low-rank fit of the data matrix.

It is proved that the obtained CUR factorization is nearly good as Ak .

How to compute the score?

Recall, from the SVD theorem, that A = UΣV T , the j-th column of A (Aj) can be
written as a linear combination of columns of Uk in terms of the j-th row of V as

Aj = UΣv j =
r∑

i=1

(σiu i )v
j
i ≈

k∑
i=1

(σiu i )v
j
i ,

with k � r (truncated SVD).

From this relation we see that each σiu i is weighted by the corresponding component v j
i

of the j-th right singular vector.
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Interpretation of the LSCUR

Recall that the rank-k truncated SVD has the following repesentation



aj1
aj2
aj3
...

...

ajm


︸ ︷︷ ︸

A

≈




︸ ︷︷ ︸

Uk

 σ1
. . .

σk


︸ ︷︷ ︸

Σk

 v j
1

· · ·
v j
k


︸ ︷︷ ︸

V T
k

Aj = UΣv j =
r∑

i=1

(σiu i )v
j
i ≈

k∑
i=1

(σiu i )v
j
i ,
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Leverage Score CUR (LSCUR)
The Normalized statistical leverage score is then computed as

πj =
1

k

k∑
i=1

(v j
i )2, j = 1, . . . , n (3)

The set {πj}nj=1 forms a probability distribution over columns of A as πj ≥ 0 and∑n
i=1 πj = 1.

The number c of columns in C must be chosen as c = O(k log k/ε2). In this way it can
be proved that

‖A− CUR‖F ≤ (2 + ε)‖A− Ak‖F , holds with high probability .

The strategy to select the c columns is described in the following

Algorithm 2 ColumnSelect(A)

1: Input: A ∈ Rm×n, c, k

2: Output: C ∈ Rm×c

3: Compute the truncated SVD of A = UΣV T and define πj , j = 1, . . . , k using (3)

4: for i = 1 : c do
5: Pick j ∈ {1, . . . , n} with probability min(1, cπj)
6: Set C(:, i) = A(:, j)/

√
c2πj

7: end for
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Leverage Score CUR (LSCUR)

The previous algorithm must be embedded within the construction of C , R and U as
described below:

Algorithm 3 LeverageScore CUR

1: Input: A ∈ Rm×n, c, r , k

2: Output: C ∈ Rm×c ,U ∈ Rc×r ,R ∈ Rr×n,

3: Invoke function ColumnSelect(A) with c = O(k log k/ε2) to construct matrix C .

4: Invoke function ColumnSelect(AT) with r = O(k log k/ε2) to construct matrix R.

5: Set matrix U as C+AR+

Recall that the pseudoinverse of a rectangular full rank matrix A ∈ Rm×n is defined as

A+ = (ATA)−1AT , if m > n (A+A = Im)

A+ = AT (AAT )−1, if n > m (AA+ = In)

which satisfies A+A = In.
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Schematic view of algorithm LSCUR

Figure 0: AlgorithmCUR, our main low-rank CUR matrix decomposition algorithm. It takes
as input an m × n real-valued matrix A, a rank parameter k, and an accuracy parameter ǫ. Its
output consists of three matrices, C, U , and R such that the error kA − CURkF is at most (2+ǫ)
times the error of the best rank k approximation.

4
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Nyström Method

Nyström methods are used for approximating symmetric positive semidefinite matrices
(SPSD)

The Nyström method approximates a matrix using only a subset of its columns, selected
by different sampling techniques.

Let A ∈ Rn×n be an SPSD matrix. Let Cn×m be a matrix consisting of m (� n)
randomly selected columns of A as columns.
Now, the matrix A can be rearranged such that C and A are written as

C =

[
W
S

]
and A =

[
W ST

S B

]
,

where W ∈ Rm×m, S ∈ R(n−m)×m and B ∈ R(n−m)×(n−m).

Computing a truncated SVD (partial spectral decomposition) of W , Wk = UkΣkU
T
k for k

(k ≤ m), the rank−k Nyström approximation is defined by

Ãk = CW †k C
T , W †k =

k∑
i=1

σ−1
i u iuT

i ,

where (u i , σi ) are the first k singular vectors and values of W (V ≡ U as W is symmetric
positive semidefinite as A).
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Nyström Method

The approximation quality of the Nyström approximation highly depends on the sampling
strategy used for column selection.

The simplest Nyström-based procedure selects columns from the original data set
uniformly at random and then uses those columns to construct a low-rank SPSD
approximation.

However, nonuniform sampling strategies can lead to lower reconstruction error for a
fixed number of column samples, both in theory and in practice.
When Ω(kε−4 ln δ−1) columns are sampled with an importance sampling distribution that
is proportional to the square of the diagonal entries of A, then

∥∥∥A− CW †k C
T
∥∥∥
ξ
≤ ‖A− Ak‖ξ + ε

n∑
i=1

A2
ii .

holds with probability 1− δ, where ξ = 2,F represents the Frobenius or spectral norm.

Petros Drinneas and Michael W. Mahoney

On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning

Journal of Machine Learning Research 6 (2005) 2153–2175
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Cross Approximation

A recent approach for constructing a low-rank approximation of a given matrix A is
connected with the problem of finding a submatrix of A of a given dimension k having
maximum volume i.e. which maximizes the absolute value of the determinant.

Let us denote a submatrix of A as A(I , J) with I , J ⊂ {1, . . . , n}.

The rank-k Cross Approximation of A is

A(:, J)A(I , J)−1A(I , :)

where I and J should maximize | detA(I , J)| and |I |, |J| = k (|.| denotes cardinality of a
set).

If A(I , J) has maximum volume then

‖A− A(:, J)A(I , J)−1A(I , :)‖max ≤ (k + 1)σk+1(A), (4)

where ‖ · ‖max denotes the maximum absolute value of the entries of a matrix.

S. A. Goreinov and E. E. Tyrtyshnikov.

The maximal-volume concept in approximation by low-rank matrices.

In Structured matrices in mathematics, CS and Engineering. Contemporary Mathematics, 2001

Unfortunately, finding the submatrix of A of maximum volume is NP hard.
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Cross Approximation: an important connection
An approximation of the form A(:, J)A(I , J)−1A(I , :) is closely connected to an
incomplete LU decomposition of A.

To see this, suppose that A has been permuted such that I = J = {1, . . . , k} and
partition

A =

[
A11 A12

A21 A22

]
, A11 ∈ Rk×k .

Assume that A11 is invertible and admits an LU decomposition A11 = L11U11, where L11

is lower triangular and U11 is upper triangular with ones on the diagonal. By setting
L21 = A21U

−1
11 and U12 = L−1

11 A12, we obtain

A = A(:, J)A(I , J)−1A(I , :) +

[
0 0

0 A(k)

]
=

[
L11

L21

] [
U11 U12

]
+

[
0 0

0 A(k)

]
(5)

=

[
L11 0
L21 I

] [
I 0

0 A(k)

] [
U11 U12

0 I

]
, (6)

with the Schur complement

A(k) := A22 − A21A
−1
11 A12.

This shows that the approximation error is governed by A(k). The factorized form (5)
corresponds exactly to what is obtained after applying k steps of the LU factorization to
A.
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Greedy algorithm for Cross Approximation

Given index sets I and J, one step of a greedy method for volume maximization consists
of choosing indices such that

(ik+1, jk+1) = arg max
{∣∣ det

(
A(I ∪ {i}, J ∪ {j})

)∣∣ : i 6∈ I , j 6∈ J
}
.

Again, let us assume that I = J = {1, . . . , k} and set Ĩ = I ∪ {k + ĩ}, J̃ = J ∪ {k + j̃} for
some ĩ , j̃ ∈ {1, . . . , n − k}. Then (6) implies

det
(
A(Ĩ , J̃)

)
= det

(
A(I , J)

)
· A(k)(ĩ , j̃).

So the local optimization problem is solved by searching the entry of A(k) that has
maximum modulus.

This choice leads to an Algorithm which is equivalent to applying LU factorization with
complete pivoting to A.

Alice Cortinovis, Daniel Kressner and Stefano Massei,
On maximum volume submatrices and cross approximation for symmetric semidefinite and
diagonally dominant matrices,

Linear Algebra and its Applications, 2020
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Cross Approximation: Algorithm

The algorithm to compute the subsets I and J yielding an m-rank approximation of A is
given below:

Algorithm 4 Cross approximation with complete pivoting

1: Initialize R0 := A, I := {}, J := {}.
2: for k = 0, . . . ,m − 1 do
3: (ik+1, jk+1) := arg maxi,j |Rk(i , j)|
4: I ← I ∪ {ik+1}, J ← J ∪ {jk+1}
5: pk+1 := Rk(ik+1, jk+1)

6: Rk+1 := Rk − 1
pk+1

Rk(:, jk+1)Rk(ik+1, :)

7: end for

The algorithm returns the sets I and J.

Matrix Rk is the remainder i.e.

Rk = A− A(:, J)A(I , J)−1A(I , :) =

[
0 0

0 A(k)

]
after a suitable permutation of the indices.
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Error bounds

If the sets I , J are given by Algorithm 4 some error results are proved for special matrices:

Diagonally dominant matrices

‖A− A(:, J)A(I , J)−1A(I , :)‖max ≤ (m + 1) · 2m+1 · σm+1(A).

Symmetric Positive Semidefinite Matrices

‖A− A(:, J)A(I , J)−1A(I , :)‖max ≤ 4m · σm+1(A).

Remark: the bound of the error for general matrices involves also the growth factor of
the Gaussian Elimination algorithm with complete pivoting.

More recent results for SPSD matrices in:

Stefano Massei
Some algorithms for maximum volume and cross approximation of symmetric semidefinite
matrices,

arxiv: 2007.04858, 2020
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Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) has become a widely used tool for the
analysis of high-dimensional data.

It automatically extracts sparse and meaningful features from a set of nonnegative
data vectors since it computes a rank-k approximation of a given data matrix
A ∈ Rm×n that is constrained to have nonnegative factors.

Unfortunately, the problem of solving NMF is NP-hard in general.

Standard NMF algorithms approximate this factorization numerically.

Due to the many important applications of nonnegative matrix factorizations,
algorithm development is an active area of research.
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Nonnegative matrix factorization

Given a data matrix A ∈ Rm×n NMF aims at decomposing it as

A ≈WH

where W ∈ Rm×k and H ∈ Rk×n and W ≥ 0, H ≥ 0 (meaning that W and H are
component-wise nonnegative).

NMF was first introduced in 1994 by Paatero and Tapper in:

Paatero, P., Tapper, U.:

Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of
data values.

Environmetrics 5, 111–126 (1994)

but it gathered more and more interest after this article by Lee and Seung in 1999:

Lee, D., Seung, H.:

Learning the Parts of Objects by Nonnegative Matrix Factorization.

Nature 401, 788–791 (1999)

Since then, the number of publications referencing the technique has grown rapidly.
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Nonnegative matrix factorization
Topic Recovery and Document Classification

The reason why NMF has become so popular is because of its ability to automatically
extract sparse and easily interpretable factors.

Let us illustrate this property of NMF through an application in text mining:

Let each column of the nonnegative data matrix A ∈ Rm×n correspond to a document
and each row to a word.

The (i , j)−th entry of the matrix A indicates the number of times the i−th word appears
in the j−th document4

Note that matrix A is, in general, rather sparse (most documents only use a small subset
of the dictionary).

Given such a matrix A and a factorization rank r , NMF generates two factors (W ,H)
such that, for all 1 ≤ j ≤ n, we have

A(:, j)︸ ︷︷ ︸
jth document

≈
r∑

k=1

W (:, k)︸ ︷︷ ︸
kth topic

H(k, j)︸ ︷︷ ︸
importance of kth topic

in jth document

, with W ≥ 0 and H ≥ 0.

4This is the so-called bag-of-words model: each document is associated with a set of words with different
weights, while the ordering of the words in the documents is not taken into account.
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Nonnegative matrix factorization
Topic Recovery and Document Classification

The basis vectors (columns of W ) can be interpreted as topics, that is, set of words
found simultaneously in different documents, while the weights in the linear combinations
(that is, the matrix H) assign the documents to the different topics, that is, identify
which document discusses which topic.

Therefore, given a set of documents, NMF identifies topics and simultaneously classifies
the documents among these different topics.

Note: NMF is closely related to probabilistic latent semantic analysis and indexing
(PLSA and PLSI)

Gaussier, E., Goutte, C.:

Relation between PLSA and NMF and implications.
Proc. 28th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, 2005

Ding, C., Li, T., Peng, W.:

On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing.

Computational Statistics & Data Analysis 52(8), 3913–3927 (2008)
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NMF. Some bibliography and applications

image processing

Lee, D., Seung, H.:

Learning the Parts of Objects by Nonnegative Matrix Factorization.

Nature 401, 788–791 (1999)

computational biology

Devarajan, K.:

Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology.

PLoS Computational Biology 4(7), e1000029 (2008)

clustering

Ding, C., He, X., Simon, H.:

On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering.

In: SIAM Int. Conf. Data Mining (SDM’05), pp. 606–610 (2005)

collaborative filtering

Melville, P., Sindhwani, V.:

Recommender systems.

Encyclopedia of machine learning 1, 829–838 (2010)

community detection

Wang, F., Li, T., Wang, X., Zhu, S., Ding, C.:

Community discovery using nonnegative matrix factorization.

Data Min. Knowl. Disc. 22(3), 493–521 (2011)
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Implementing NMF

To obtain a rank r nonnegative matrix factorization, we have to solve the following
optimisation problem:

min
W ∈ Rm×r

H ∈ Rr×n

‖A−WH‖2
F subject to W ≥ 0 and H ≥ 0. (7)

There are many issues when using NMF in practice.

In particular, as opposed to the unconstrained problem which can be solved efficiently,
NMF is NP-hard in general.

Hence, in practice, most algorithms are applications of standard nonlinear optimization
methods and may only be guaranteed to converge to stationary points;

However, these heuristics have been proved to be successful in many applications.
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Implementing NMF

Another important issue is that NMF is ill-posed:

Given an NMF (W ,H) of A, there usually exist equivalent NMF’s (W ′,H ′) with
W ′H ′ = WH.

In particular, any matrix Q satisfying WQ ≥ 0 and Q−1H ≥ 0 generates such an
equivalent factorization.

The matrix Q can always be chosen as the permutation of a diagonal matrix with
positive diagonal elements (that is, as a monomial matrix) and this amounts to the
scaling and permutation of the rank-one factors W (:, k)H(k, :) for 1 ≤ k ≤ r ; this is not
an issue in practice.
The issue is when there exist non-monomial matrices Q satisfying the above conditions:0 1 1 1

1 0 1 1
1 1 0 1

 =

0 1 1
1 0 1
1 1 0

1 0 0 0.5
0 1 0 0.5
0 0 1 0.5

 =

1 0 0
0 1 0
0 0 1

0 1 1 1
1 0 1 1
1 1 0 1

 .
In that case, such equivalent factorizations generate different interpretations!

For example, in text mining, they would lead to different topics and classifications.

In practice, this issue is tackled using other priors on the factors W and H and adding
proper regularization terms in the objective function.
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Nonnegative Matrix Factorizations. Practical Algorithms.

The minimization problem

min ‖A−WH‖2
F = min

n∑
i=1

‖A(i) −WH(i)‖2
2, subject to W ,H ≥ 0,

can be split into n independent problems

n∑
i=1

min
h≥0

‖a −W h‖2,

involving columns of A and of H and assuming W known.

After obtaining an approximation of columns of H the same idea is applied by taking now
H fixed to compute the rows of W .

This gives raise e.g. to the Alternating Least Square (ALS) method.
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The Alternating Least Square method

Algorithm 5 Alternating Least Squares

1: Initialize W and H
2: repeat
3: Solve minH≥0

1
2
‖A−WH‖2

F

4: Solve minW≥0
1
2
‖A−WH‖2

F

5: until stopping criterion

This algorithm requires excessive computing time to solve the subproblems.

It is usually replaced by an inexact LS solution by solving the unconstrained problem and
projecting it in the space of nonnegative components.

Once again the matrix minimization problem is solved column by columns by solving a
classical LS problem:

min ‖a −W h‖2 =⇒ W TW h = W Ta
=⇒ W TWH = W TA

This yields the algorithm on the next slide.
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Inexact Alternating Least Squares Algorithm

Algorithm 6 Inexact Alternating Least Squares

1: Initialize W and H
2: repeat
3: Solve for H the equation: W TWH = W TA;
4: Set to zero all negative elements of H.
5: Solve for W the equation: WHHT = AHT ;
6: Set to zero all negative elements of W .
7: until stopping criterion

One of the possible alternative methods is represented by the Gradient Descent (see the
second part of the course) which in short, given the multivariate function

F (h) = ‖a −W h‖2
2

constructs a sequence x0, . . . , xk , . . . defined as

xk+1 = xk + αk∇F (xk), (xk+1)i = max{(xk+1), 0},
where ∇F is the gradient of F and αk is a scalar to be determined.

Algorithm development is an active area of research!
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Example. NMF of the term-document matrix

Recall the term-document example.

Term D1 D2 D3 D4 D5
eigenvalue 0 0 0 1 0
England 0 0 0 0 1
FIFA 0 0 0 0 1
Google 1 0 1 0 0
Internet 1 0 0 0 0
link 0 1 0 0 0
matrix 1 0 1 1 0
page 0 1 1 0 0
rank 0 0 1 1 1
Web 0 1 1 0 0

−→ A =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 1 1 1
0 1 1 0 0


A nonnegative factorization A ≈WH can be used for clustering: the data vector aj is
assigned to cluster i if hij is the largest element in column j of H.

To obtain a NM Factorization we can invoke the Matlab function

[W,H] = nnmf (A, k )

which uses by default the Inexact ALS method. The second parameter is the rank of the
factorization.
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Example. Continued

>> h e l p nnmf

nnmf Non−n e g a t i v e m a t r i x f a c t o r i z a t i o n .

[W,H] = nnmf (A,K) f a c t o r s t h e N−by−M m a t r i x A i n t o non−n e g a t i v e f a c t o r s
W (N−by−K) and H (K−by−M) .

The r e s u l t i s not an e x a c t f a c t o r i z a t i o n , but W∗H i s a lower−rank
a p p r o x i m a t i o n to t h e o r i g i n a l m a t r i x A .

The W and H m a t r i c e s a r e chosen to m i n i m i z e t h e o b j e c t i v e f u n c t i o n t h a t
i s d e f i n e d as t h e r o o t mean s q u a r e d r e s i d u a l between A and t h e

a p p r o x i m a t i o n W∗H.
This i s e q u i v a l e n t to

D = norm (A−W∗H, ’ f r o ’ ) / s q r t (N∗M)

The f a c t o r i z a t i o n u s e s an i t e r a t i v e method s t a r t i n g w i t h random i n i t i a l
v a l u e s f o r W and H.

Because t h e o b j e c t i v e f u n c t i o n o f t e n has l o c a l
minima , r e p e a t e d f a c t o r i z a t i o n s may y i e l d d i f f e r e n t W and H v a l u e s .

Sometimes t h e a l g o r i t h m c o n v e r g e s to s o l u t i o n s o f l o w e r rank than K,
and t h i s i s o f t e n an i n d i c a t i o n t h a t t h e r e s u l t i s not o p t i m a l .

[W, H,D] = nnmf ( . . . ) a l s o r e t u r n s D, t h e r o o t mean s q u a r e r e s i d u a l .

A. Mart́ınez Calomardo Numerical Linear Algebra and Machine Learning December 9, 2020 66 / 72



Example. Continued

Using k = 2 we obtain:

W =



0.6415 0
0.3654 0
0.3654 0
0.9818 0.2521
0.5507 0

0 0.9162
1.6232 0.0331
0.1183 1.3563
1.4380 0.0963
0.1183 1.3563


H =

[
0.4865 0 0.5813 0.5667 0.3228

0 0.8094 0.5873 0 0

]

It is now possible to interpret the decomposition. The first four documents are well
represented by the basis vectors, which have large components for Google-related
keywords.

In contrast, the 5-th document is represented by the first basis vector only, but its
coordinates are smaller than those of the first four Google-oriented documents.

In this way, the rank-2 approximation accentuates the Google-related contents, while the
football-document is de-emphasized.
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Example. Continued

Choosing instead k = 3 yields

W =



0.3655 0 0.3074
0 0 0.9674
0 0 0.9674

1.2572 0.2061 0
0.8765 0 0

0 0.8957 0
1.6228 0.0507 0.1546
0.0926 1.3693 0.0093
0.5129 0.2855 1.3130
0.0926 1.3693 0.0093


H =

0.7401 0 0.5466 0.3918 0
0 0.7974 0.6035 0 0
0 0 0.1879 0.3821 0.9048



We see that now the third vector in W is essentially a football basis vector, while the
other two represent the Google-related documents.
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Query matching in Text mining

Query matching is the process of finding the documents that are relevant to a particular
query q.

Using a rank-k approximation the term-document matrix is represented by Ak = WkHk .
Query matching is performed in this k-dimensional space.

We make use of the cosine distance measure (the cosines of the angles that the query
form with the columns of the rank-k approximation of the data):
qTAk = qTWkHk = (W T

k q)THk = qT
k Hk :

cos(θj) =
qT
k hj

||qk ||2||hj ||2

A document aj is deemed relevant if the angle between the query q and aj is small
enough.

For the example, for the query eigenvalue (q = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ) we obtained
the following vector of cosine distances:[

0.7653 0 0.6453 0.9973 0.6437
]

indicating the document number 4 as the most relevant one.
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Concluding remarks

We have seen:

How information extraction from data and pattern finding relies on efficient
techniques from numerical linear algebra that not only enable computations
(reducing the dimensionality) but also reveal hidden information.

Recent trends in data analysis via matrix factorizations. Beyond the use of the
classical SVD we have introduced also interpretable factorizations such as the
non-negative matrix factorization (NMF) or CUR decompositions.

For a very vast bibliographical survey on NLA for Data Science see the recent work:

Martin Stoll
A literature survey of matrix methods for data science

GAMM Mitteilungen, 43(3) Special Issue:Applied and Numerical Linear Algebra Part I,

2020.

Beautiful books that provide general introductions to linear algebra for data science
applications are:

Lars Eldén Matrix Methods in Data Mining and Pattern Recognition. Philadelphia:
SIAM, 2019.

Gilbert Strang Linear Algebra and learning from data, Wellesley-Cambridge Press, 2019.
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Next lecture

We will dive into the fascinating world of Deep Learning!
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